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A Case for Peer-to-Peer 3D Streaming
Shun-Yun Hu, Shao-Chen Chang, Wei-Lun Sung, and Jehn-Ruey Jiang

Abstract— Interactive 3D contents on the Internet have yet
become popular due to their large data volume and the limited
network bandwidth. Progressive content transmission, or3D
streaming, thus is necessary for real-time content interactions
and manipulations. However, the heavy data and processing
requirements of 3D streaming challenge the scalability of current
client-server-based delivery methods. We propose the use ofpeer-
to-peer (P2P) networks to make 3D streaming more scalable
and affordable, so that interactive 3D contents may see wider
adoptions.

We also describe a conceptual model and a design framework,
called FLoD, for P2P-based 3D streaming that supports multi-
user networked virtual environments(NVEs) such asMassively
Multiplayer Online Games (MMOGs). FLoD allows clients to
obtain relevant 3D data from other clients while minimizing
server resource usage. Evaluation of FLoD through simulations
shows that P2P-based 3D streaming can be fundamentally more
scalable than existing client-server approaches.

Index Terms— 3D streaming, peer-to-peer (P2P), networked
virtual environment (NVE), scalability, overlay networks, visibil-
ity determination

I. I NTRODUCTION

3DSTREAMING refers to the continuous and real-time
delivery of 3D contents (such as meshes, textures,

animations, and scene graphs) over network connections to
allow user interactions without a full download. Similar to
audio or videomedia streaming[1], 3D contents need to be
fragmented into pieces on a server, before they can be trans-
mitted, reconstructed, and displayed at the client side. Unlike
media streaming, as each user often has a different visibility or
interest area, the transmission sequence in 3D streaming varies
from user to user and may require individualized visibility
calculations [2] (i.e. akin to everyone watches a video with
unique editings).

There are mainly four types of 3D streaming: object stream-
ing, scene streaming, visualization streaming, and image-based
streaming. In this paper we will focus on 3Dscene streaming
for a potentially largenetworked virtual environment(NVE)
[3] with many 3D objects, where users can navigate and pos-
sibly communicate with one another in real-time. Existing 3D
streaming all adopts the client-server architecture as the main
delivery model. While this may be fine for a few users, the
data and processing-intensive nature of 3D streaming demands
prohibitively vast amount of server-side bandwidth and CPU
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resources when serving a large audience. 3D applications with
a large volume of contents (e.g. video games) thus usually
require the contents be obtained through pre-installations via
CDs or full downloads. However, current application trends
point to a need for real-time 3D streaming on possibly a
massive scale:

• Google Earth is an application that has provided real-
time viewing of detailed satellite images of the globe to
over a million Internet users. Extending the image-based
Earth into a fully 3D one may only be a matter of time, as
indicated by initiatives such asX3D Earth [4]. However,
pre-installing a full 3D Earth for all users is unpractical.

• Massively Multiplayer Online Games(MMOGs) [5] are
Internet games where up to hundreds of thousands of
users interact simultaneously in massive 3D worlds. The
most popular titles often have millions of global users.
MMOGs’ growth and popularity, and their extensions
to areas beyond entertainment, may promote a need for
content delivery easier than the current CD installations.

Scalable and efficient 3D streaming thus may be an impor-
tant enabler for diverse forms of new Internet applications. We
propose the use ofpeer-to-peer(P2P) networks to improve the
scalability and affordability of 3D scene streaming, based on
the observation that users navigating through a 3D scene may
own similar contents due to overlapped visibility. Users thus
might obtain relevant contents from one another. Although
there has been significant work for P2P-based media streaming
in recent years, it is not directly applicable to 3D streaming
as the nature of 3D contents differs from other media types.
Novel understandings to the fundamental problems involved
and the design of new streaming techniques thus are necessary.

The contributions of this paper are two-fold. First, we
formulate a conceptual model for realizing real-time 3D
scene streaming on P2P networks by identifying the basic
3D streaming issues as thefragmentationof objects and the
prioritization of transmission order. Additional issues ofscene
partition andpeer and piece selectionare introduced when 3D
streaming is adapted to P2P networks. Second, we present the
design and evaluation ofFLoD (Flowing Level-of-Details), a
scalable P2P framework that supports 3D scene streaming for
applications such asX3D Earth or MMOGs. By identifying
and separating the graphics and the networking aspects of the
system, FLoD allows researchers from both communities to
tackle and improve each aspect independently.

The rest of the paper is organized as follows. Section II
provides background on the major themes of this paper. In
Section III, we present our model for P2P-based 3D scene
streaming. We describe the design of FLoD in Section IV,
and its evaluation in Section V. The paper concludes with a
summary and descriptions of future work in Section VI.



ASCEND TECHNICAL REPORT: ASCEND-TR-002-2006A 2

II. BACKGROUND

We first provide some background related to the main
themes of this paper (i.e. 3D streaming and P2P networks).
Specifically, we will describe work related to P2P media
streaming and P2P networked virtual environments.

A. 3D Streaming

In general, the main goal of 3D streaming is to provide 3D
contents in real-time for users over network links, such that
the interactivity and visual qualities of the contents may match
as closely as if the they were stored locally [6]. The resource
bottleneck is often assumed to be the bandwidth and not ren-
dering or processing power [2]. To achieve this, simplification
and progressive transmission are two dominant strategies [7].
Existing 3D streaming techniques may be categorized into
four main types: object, scene, visualization, and image-based
streaming, which we describe as follows:

1) Object streaming:Hoppe introduced the concept ofpro-
gressive meshes(PM) [8], which store an arbitrary triangular
mesh as an appearance-preserving but much coarserbase mesh
and a number of refinement pieces. A remote user may view
or interact immediately with the object once the base mesh
is downloaded. Streaming additional pieces incrementally re-
fines the base mesh and restores the original mesh exactly.
Geometrical meshes thus can be streamed from servers to
clients, making interactions with 3D data possible without a
complete download. Progressive meshes were the basis that
sparked much subsequent research (e.g.view-dependentPM
[9], compressed PM [10], over lossy transmission links [11],
over wireless channels [12], and QoS-related streaming [13]).
For high resolution models, streaming ofQSplat (a non-
polygonal point representation) was investigated in [7]. Object
streaming has also been studied in the context ofgeometry
image [14], specific file formats (e.g. X3D [15] and MPEG-
4’s BIFS [16]), and data types besides polygonal meshes, such
as textures [17], animations [18], and scene graphs [19].

2) Scene streaming:Object streaming extends naturally to
scene streaming, where a collection of objects are placed
arbitrarily in space and streamed with their placement in-
formation to clients according to user visibility or interests.
Scene streaming usually aims to provide aremote walkthrough
(i.e. navigation) or multi-user NVE experience. As many more
objects may exist than what the user can see at a given time,
scene streaming generally has two stages:object determination
andobject transmission. For the first stage, the server employs
visibility determination techniques to cull away irrelevant ob-
jects, and uses visual quality estimates to assign transmission
priorities. For the second stage, data reduction techniques
such as progressive representations and compressions are used
for sending the object pieces (i.e. similar to single object
streaming). Scene streaming also benefits from the reuse of
cached contents, so that objects need not be sent again if they
are re-visited later in the walkthrough [2]. Many techniques
useful for scene streaming were first described by Schmalstieg
and Gervautz [20], where each user’s visibility is limited to
a circular area of interest(AOI). A server determines and
transmits the set of visible objects at differentlevel of details

(LODs) to clients. Clients alsoprefetchobjects to mask the
download latency from users. Their subsequent work replaced
the use of discrete LODs with continuous (smooth) LODs and
named the processremote rendering[21]. Teler and Lischinski
proposed the use of pre-rendered image-basedimpostorsas the
lowest LOD of 3D objects to allow faster initial visualizations
[2]. The server also uses anonline optimization algorithm
to choose suitable contents that may provide the best visual
quality under a limited bandwidth budget. Immediate and
practical navigation thus is possible even with a 2000 bytes/s
bandwidth.Cyberwalk[22] adopts progressive meshes to avoid
the data redundancy from sending multiple LODs. It also
focuses on caching and prefetching techniques to enhance
visual perceptions and reduce theresponse timeto obtain
objects. Deb and Narayanan propose ageometry streaming
systemthat focuses on maintaining interactive frame-rate by
adaptive data selection according to the client capabilities
and network conditions [6]. Some social MMOG systems
utilize scene streaming to support dynamic contents (e.g.
ActiveWorlds, There.com [23], and Second Life [24]), but few
public information is available on their mechanisms.

3) Visualization streaming:Certain scientific computing
generates vast amounts of data that requires visualization
in 3D spaces for analysis or comprehension. Streaming for
these 3D data differs from object-based streaming in that
the data volume is usually much larger, and may involve
time-dependent model deformations that require complete
refreshes (i.e. re-download) of the dataset. Accuracy of model
representations is also given priority over visual aesthetics.
Olbrich and Pralle pioneered a series of such systems for
scientific visualizations based on VRML and a customized
DocShow-VR(DVR) format [25]. Another system,ViSTA[26],
focuses on interactive visualizations ofcomputational fluid
dynamics(CFD), where a server-cluster is used for the parallel
generations and post-processing of raw data to allow view-
dependent visualizations. Such streaming systems call for
an environment of high performance networks and graphics
servers to pipeline the processing of large data volumes. They
are thus not suitable on the Internet where the bandwidth is
often limited and graphics servers may not be available.

4) Image-based streaming:In image-based streaming, 3D
contents are stored at the server only. Clients instead receive
2D rendered images generated in real-time by the server
[27]. This approach consumes only constant bandwidth, and
is suitable, maybe even necessary, when the client has only
thin functionalities (i.e. low processing power with no 3D
acceleration capability, such as hand-held devices). However,
the severe processing requirements on the server may cause
poor scalability and interactivity.

B. Peer-to-Peer Networks

P2P networks have gained publicity and popularity through
file-sharing applications in recent years, yet its central concept
– a distributed network where participants contribute resources
to support collective tasks – is applicable to a wide range of
uses (e.g.distributed hash table[28], voice-over-IP[29], and
web cache[30], etc.).
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Existing file-sharing mechanism such asBitTorrent [31] has
demonstrated the feasibility to efficiently distribute large files
by dividing them into small pieces and utilizing the uplink
bandwidth of other peers. Although typical bandwidth on
today’s end-user networks is asymmetric, where the “uplink”
is less than the “downlink” bandwidth, by downloading from
multiple peers in parallel, good performance can still be
achieved. For example, average download between 240kbps
to 500kbps were reported in measurement studies [32], [33].

Media streaming on P2P networks has been studied exten-
sively in recent years and mainly falls into two categories:
synchronous (i.e. live) streaming [1] and asynchronous (i.e.
on-demand) streaming [34]. AlthoughIP multicastis ideal for
disseminating identical data streams to many receivers, its lack
of deployment has motivated the designs ofapplication-layer
multicast(or end system multicast[35]), where multicast trees
are built with the clients as nodes, and the server as root. Issues
such as minimizing the tree depth, balancing each node’s
link-degree, and maintaining the tree structure after node
departures thus are the main issues. Although similarities exist
between 3D and media streaming (e.g. data stream is usable
before a full download, sequential data block transfer, and the
applicability of prefetching), they differ in one fundamental
aspect: the contents and transmission order of 3D streaming
are not static but based on the results of visibility calculations.
As each user may have different visibilities, individual data
streams are mostly unique unless users are in close proximities
with each other [2]. In other words,3D streaming works as
if every individual user is watching a unique home movie,
recorded by different cameras within the same scene. Due to
this major difference, existing P2P media streaming techniques
may not be straightforwardly applied to 3D streaming.

The study of multiuser networked virtual environments
seeks to allow people at different places to interact in the same
virtual world as seamlessly as possible [3]. NVE’s network
model has evolved from the least scalablepoint-to-point (i.e.
all participating users exchange messages directly), to the
laterclient-server(i.e. a centralized server receives, processes,
and relays messages for all users) and today’sserver-cluster
models. However, as server-based architectures likely will not
scale user size to the next order of magnitude, some P2P
solutions have recently been proposed [5], [36], [37]. As
each user only has limited bandwidth, the premise of P2P-
based NVE (P2P-NVE) is that by connecting with only a few
nearby users, each user node can obtain the relevant messages
within its area of interest(AOI). The central challenge in
P2P-NVE systems thus is aneighbor discovery problem: how
to allow every user node to discover the neighbors within
its AOI, known asAOI neighbors, correctly and efficiently
as they move around. Aside from some variations in the
correctness and efficiency to maintain the P2P connectivity,
most current P2P-NVE proposals can provide the following
function without server involvements: given a user node’s
virtual coordinate and AOI in the NVE (usually specified as a
circle centered at the user), return the information of its AOI
neighbors such as the neighbors’ coordinates and IP addresses.
This function will be relevant to our design for FLoD, as
discussed later in Section IV.

III. P2P-BASED 3D SCENE STREAMING

In this section, we try to formulate a conceptual model for
understanding 3D scene streaming in a P2P context.

A. System Model and Assumptions

We consider aremote walkthrough[2], [22] scenario where
3D objects of various sizes and shapes are placed in a large
scene with specific positions and orientations. Objects are
defined by polygonal meshes and their associated data, such as
textures, animations, and light maps, etc.. Each user navigates
the scene through a client program (the termsuser, node,
client, and peer will be used interchangeably from now on).
As there are potentially many objects, it is neither feasible nor
necessary to see and interact with all of them at once. Each
user’s visibility and interaction thus is limited to a circular
AOI centered at the user’s current location. For simplicity,
we assume that all objects are static in both their positions
and contents. In this basic model, we also do not consider
displaying 3D representations of other users (i.e. each user
can only see static objects, but not each other).

For a given 3D object, we assume that its mesh and other
data can be fragmented into abase pieceand manyrefinement
pieces (Fig. 1). The specific fragmentation is beyond our
scope, but whichever the mechanism, we assume that the user
is provided with a minimal working set of objects once the
base pieces are obtained, such that the scene can be rendered
and navigation may start. Progressive meshes [8] and related
techniques such as geometry image [14] may be used for mesh
fragmentation, while progressive encodings of GIF, JPEG, or
PNG, may be used for texture fragmentation [17].

All 3D contents are initially stored at a server, and clients
obtain them through a streaming process from either the server
or other clients. Rendering and navigation may begin as soon
as base pieces of a few objects within the AOI are obtained.

Fig. 1. 3D content fragmentation.

B. Requirements

From the user’s perspective, the main concern for 3D
streaming is itsvisual quality, which is captured by concepts
such aswalkthrough quality[2] or visual perception[22].
However, as visual quality can be a subjective judgement, a
more definable concept may be thestreaming qualityin terms
of “how much” and “how fast” a client obtains data. For the
former, one measure is the ratio between the data currently
owned and those necessary to render a view at an instant,
which we will call fill ratio . A ratio of 1 indicates the best
visual quality, as the rendered image would be the same as
if all contents are locally stored. As for the latter, we may
use the following two measures:base latency, the time to
obtain the base piece of an object, andcompletion latency,
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Fig. 2. A conceptual model for P2P-based 3D scene streaming.

the time to download the complete data of an object. Note
that the two terms are similar tolatency timeand response
time in [22]. Base latency indicates the delay for a user to see
a basic view of an object, while completion latency indicates
the delay of being able to fully inspect or manipulate an object.
For clients, the goal of 3D streaming thus is to optimize the
streaming quality by maximizing the fill ratio for every view
and minimizing the base and completion latency.

From the server’s perspective, the main concern is to
improve the system’sscalabilityby distributing processing and
transmission loads to clients as much as possible. For transmis-
sions, it is preferable if most contents are delivered by clients.
This can be measured by the amount of server-side bandwidth
usage. For processing, it is desirable to minimize the server’s
role in calculating user visibility and deciding the transmission
strategy. Ideally, if these calculations are delegated to clients,
then server-side processing can be conserved for answering
data requests only. For servers, the goal of 3D streaming thus
is to minimize their CPU and bandwidth usage.

C. Challenges

To meet the above requirements by utilizing client resources,
we identify two new issues to address:
Distributed visibility determination Preferably, visibility
determination should be done without server involvement or
global knowledge of the scene. However, as only the server
initially possesses complete knowledge of object placements
(i.e. thescene descriptions, which are required for visibility
calculations), we need ways to partition and distribute scene
descriptions to clients so that visibility determination can be
done in a distributed manner efficiently.
Peer and piece selectionTo optimize the visual (streaming)
quality for a given bandwidth budget, clients should perform
peer selectionto contact the proper peers andpiece selection
to request the proper data pieces for object reconstructions. As
there may be multiple relevant data sources, factors such as
resource capacity, content availability and network conditions
need to be considered together. Additionally, as 3D streaming
is view-dependent [9] and that some data pieces may be
applied in arbitrary order during object reconstructions. 3D
streaming requires only aroughly sequentialtransfer order,
which should be considered during piece selection to ensure
that piece dependencies are satisfied. On the other hand,
where dependencies do not exist, concurrent download may
be exploited to accelerate data retrievals.

D. Conceptual Model

Given the above requirements and challenges, we now
summarize the main tasks of 3D scene streaming as follows:
Partition : The task of dividing the entire scene into blocks or
cells so that global knowledge of all object placements is not
required for visibility determination. Scene partition is essen-
tial if visibility calculations were to become decentralized.
Fragmentation: The task of dividing a 3D object into pieces
so that it may be transmitted over the network and recon-
structed back progressively by a client. Progressive meshes or
textures are all examples of fragmentation techniques.
Prefetching: The task of predicting data usage ahead of time
and generating objects or scenes requests so that latency due
to transmissions is masked from users. Predications of user
movements or behaviors are often employed for this task [22].
Prioritization : The task of performing visibility determination
to generate the ordering for a client to obtain object pieces
within a scene. The goal is to produce the best streaming
quality with considerations of factors such as object distance,
line-of-sight [2], [22], or the requesting client’s bandwidth [6].
Selection: The task of determining the proper peers to connect
and pieces to obtain based on considerations of peer capacity,
content availability and network conditions, in order to fulfill
data requests from prefetching and prioritization efficiently.

Fig. 2 shows a coupling of the above tasks into a conceptual
model for P2P-based 3D scene streaming.User actionand
renderingare the only steps if contents are locally available.
Object preprocessing, determination, transmission, andrecon-
struction are additional stages in 3D streaming. For client-
server-based 3D streaming, onlyfragmentation, prefetching,
and prioritization are considered.Partition of the scene and
the selectionof peers and pieces are new issues introduced in
P2P-based 3D streaming. Table I shows a comparison between
client-server and P2P-based 3D streaming.

TABLE I

TASK COMPARISONS BETWEEN CLIENT-SERVER ANDP2P 3DSTREAMING.
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IV. D ESIGN OFFLOD

In this section, we describe our design of a P2P-based 3D
streaming framework that fulfills the requirements in the last
section. An overview is given first, followed by the procedures.

A. Overview

FLoD’s main design rationale is that as a node often has
overlapped visibility with its AOI neighbors, it is likely that
the neighbors already possess some relevant 3D contents.
By requesting data from the neighbors first, the server can
be relieved from serving the same contents repetitively. We
assume the existence of a P2P-NVE overlay such as VON
[37], which returns the information of AOI neighbors given
a node’s position and AOI-radius. The information includes
the neighbors’ IDs, coordinates, and IP addresses. As a node
moves around, it updates the overlay with its new position and
gets refreshed information on AOI neighbors.

To distribute scene descriptions to clients efficiently, the
NVE is partitioned into fixed-size squarecells (similar to
[22]), each has a small scene description specifying the objects
within. Each 3D object is specified by aunique ID, location
point, orientation and scale within the scene description.
Selecting visible objects in the AOI can thus be done in a
fully-distributed manner, as each node can locally determine
the cells covered by its AOI (Fig. 3). When entering a
new area, a client first prepares ascenes requestto obtain
scene descriptions from its AOI neighbors or the server. A
pieces requestis then created for the visible objects. Piece
dependency is also specified in the request to ensure that data
retrieval follows the ordering of object reconstructions. Views
are rendered progressively as objects are streamed from either
the neighbors or the server (which acts as the final fallback if
peers cannot respond due to data or bandwidth unavailability).

Fig. 3. Schematic of a NVE divided intocells. Big circle is the AOI of the
star node while triangles are otheruser nodes. Various shapes are 3D objects,
with their location pointsas dots. Note that cell IDs can be calculated given
the star node’s location coordinates, the world dimensions and cell size.

As FLoD seeks to be flexible and extensible in accommo-
dating evolving policies and techniques, we separate the main
client-side tasks into agraphics layerand anetworking layer
(Fig. 4). The graphics layer performsobject determination
(i.e. prefetching and prioritization) andobject reconstruction
(i.e. de-partition and de-fragmentation), while the networking

Fig. 4. FLoD’s client-side task flow and layers. Data flows: (A) scenes
request (B) scene descriptions (C) pieces request (D) data pieces. Numerical
labels for the tasks are described in the FLoDProcedures.

layer is responsible forobject transmission(i.e. peer and piece
selection). Prefetching and caching are not yet considered in
depth, but are included for the sake of completeness. The
application sits on top of FLoD and performs the traditional
3D application tasks of takinguser actionsand rendering.

B. Procedures

We now describe FLoD’s main procedures in more details.
Tasks performed in each procedure are specified after the
procedure names according to the task numbers in Fig. 4:

Login: The joining node enters the P2P network by speci-
fying a join location and AOI-radius to the P2P-NVEoverlay,
which returns an initial list of AOI neighbors. The NVE’s
dimensions and cell size are also obtained from agateway
server. Obtain Scene Descriptionsprocedure is then called.

Obtain Scene Descriptions (2, 4):The requesting node
determines the cells that its AOI covers, and uses theRequest
for Data procedure to get the cells’scene descriptionsby
passing ascenes requestmade of cell IDs. Once thescene
descriptionsare obtained and analyzed, the node requests for
3D objects with theObtain Objectsprocedure.

Obtain Objects (5, 6, 7):Visibility determination produces
a prioritizedpieces request, consisting of (object ID, piece ID,
depended-piece ID) tuples, for any missing visible data. Pieces
are obtained according to their priorities and dependencies via
the Request for Dataprocedure, and stored to a cache once
downloaded. A view is rendered from the cache according
to objects’ specified locations, orientations, and scales in the
scene descriptions.

Request for Data (3): If the local cache does not contain
the desired data, requests are sent to thedata source nodes
(composed of current AOI neighbors and thegateway server),
according to certainpeer selection policy. The actual data
exchanges are governed by certainpiece selection policy. As
thegateway serveris part of the pool, requests will eventually
go to the server if the peers cannot fulfill them.

Move (1): A node moves by sending a position update to
theoverlay. If new neighbors are discovered, they will become
part of thedata source nodes. If the node has entered any new
cells which it does not have thescene descriptions, Obtain
Scene Descriptionsis invoked.

Logout: A node may simply disconnect from the P2P
network. As the system is fairly distributed, failure or de-
parture of any single user node will not affect the system’s
operation. Other nodes will learn about the departing node
through updated neighbor list provided by theoverlay.
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V. EVALUATION

To evaluate FLoD’s design, we perform simulations using
a discrete-time simulator. In this section, we present our
simulation policies, metrics, setup, results, and discussions.

A. FLoD Policies

As FLoD is a flexible framework where different policies
may be adopted for various tasks, we first describe the policies
used in this initial evaluation of FLoD:

Prefetching and caching:We do not use any prefetching in
the simulation as it is not our main focus. The cache size is
set to 15MB where the farthest object is replaced first when
the cache size limit is exceeded [22].

Prioritization strategy:The highest priority is given to the
base pieces (i.e. piece id = 0). Subsequent pieces are inserted
to the pieces requestby rotating the next piece from each
desired object (i.e. we assume that for a given object, each
piece depends only on the previous piece). For example, if
the pieces requestconsists of(object id, pieceid, depended-
pieceid) tuples, for requesting object #1, #2, #3 the list would
look like (1,0,-) (2,0,-) (3,0,-) (1,1,0) (2,1,0) (3,1,0) (1,2,1)
(2,2,1) (3,2,1), etc..

Peer and piece selection:A node first queries all known AOI
neighbors for the availability of the requested data. A request
is then sent randomly to a positively responded neighbor. If
the data is unavailable, a node will re-query until either 1) it
becomes the nearest node to the requested object or 2) it is
within 20 units of the requested object, then the request is sent
to the server. For now, our piece selection policy is to simply
select the next piece in thepieces request, as 3D contents need
to be obtained more or less sequentially.

B. Simulation Metrics

The purpose of the simulation is to compare thescalability
and streaming qualitybetween a P2P and a client-server
approach of 3D streaming, in respect to the following metrics:

Bandwidth usage:One fundamental requirement for scal-
able systems is that resource usage at each system component
(i.e. server or client) isboundedwithout exceeding the compo-
nent’s capacity. Otherwise an overloaded component may fail
or degrade its service quality. Bandwidth usage at all nodes and
the server, thus are important indicators for system scalability.

Fill ratio: 3D streaming aims to achieve a visual quality
matching that of locally stored contents. Here we measure the
ratio of data volumes between the client’s obtained data and
visible data (according to the server’s storage), to estimate a
client’s capability of rendering a view.

Base latency:We define the time between the initial query
and the time a base piece becomes available at a client asbase
latency. It serves as an indicator for how soon a user may start
meaningful navigation when entering a new scene.

Peer hit ratio: The success of data requests made to other
peers may influence both the base latency and the transmission
overhead for re-requests. We thus definepeer hit ratioas the
percentage of object pieces that are successfully obtained from
those requested. This may indicate the efficiency of the peer
selection and caching policy.

TABLE II

SIMULATION PARAMETERS

World dimension (units) 1000x1000

Cell size (units) 100x100

AOI-radius (units) 75

Time-steps 3000

Number of nodes 100 - 1000 (in 100 increment)

Number of objects 500

Node speed (units / step) 1

Client cache size (MB) 15

C. Simulation Setup

We chooseVoronoi-based Overlay Network(VON) as the
underlying P2P overlay, as it has demonstrated scalability,
consistency, and reliability [37]. Note that FLoD may also
use other P2P-NVE overlays, as long as correct and timely
information on AOI neighbors are provided. One benefit of
VON is that a few nearest neighbors are always maintained
even when none is within the AOI. Requests to peers thus are
still possible in such cases. As the main purpose of this work is
to compare the resource usage patterns between client-server
and P2P 3D streaming, we assume that both the server and
clients have unlimited bandwidth. Although this assumption
does not apply to the current Internet, it does approximate
some existing high-speed military simulation networks.

For the simulations, we first randomly place a number
of objects on a 2D map partitioned into square cells. For
simplicity, we assume that each object has only one set of
pieces (i.e. we assume that each piece contains a combination
of various types of data such as meshes or textures, enough for
object reconstructions). Object sizes range randomly between
100kb and 500kb, with 20% of the size as the base piece, and
50kb for each refinement pieces. We then create a number of
nodes, each moves with a constant speed usingrandom walk
as the movement model [22]. Scene descriptions or data pieces
are requested from AOI neighbors as needed. The simulation
proceeds in discretetime-steps, where a node may either
process or send messages to others in each step. Assuming
each step is 100ms, our 3000-step simulation is equivalent
to running a system for 5 minutes. Statistics are collected
after 200 simulation steps when transmissions have stabilized.
Specific simulation parameters are shown in Table II.

D. Simulation Results

Scalability The amount of per-second server upload size
grows linearly for client-server (C/S) but is significantly lower
for FLoD at less than 1 MB/s (Fig. 5(a)). For clients, Fig
5(b) shows that the the per-node per-second download size is
around 160kb/s for C/S and slightly more for FLoD, but both
remains constant regardless of node size. This is due to our
assumption of uniform object distributions and constant node
speeds, so that the average amount of additional contents to
render a client view stays constant. Client uploads in FLoD
are much higher than C/S and roughly equals to downloads as
the clients are capable to service other clients. Fig. 5(c) shows
a time-series of server upload size for 1000 nodes, where the
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(a) server transmissions (upload) (b) client transmissions (upload and download) (c) server transmission time-series (1000 nodes)

Fig. 5. Bandwidth usage comparisons (Average transmission size per node per second)

(a) fill ratio (b) base latency (c) peer hit ratio

Fig. 6. Streaming quality comparisons

transmissions stabilize after 1000 steps for C/S, and remains
low at less than 1MB/s for FLoD. Note that the initial server
transmission is exceptionally large (e.g. 2207MB/s for C/S and
190MB/s for FLoD) as all the initial requests are answered by
the server without bandwidth limits. This allows contents be
quickly disseminated to all peers in the beginning. The cost to
maintain the overlay is about 10-20 KB/s in all cases, which
is relatively small compared to content transmissions.
Streaming Quality We usefill ratio , base latency, andpeer
hit ratio to measure the streaming quality of a system. From
Fig. 6(a) we see that fill ratios are quite high (i.e. above 98%
for C/S and above 96% for FLoD when node density is high),
which implies that high visual quality can be achieved. As the
simulation assumes unlimited bandwidth, the base latency in
C/S is less than 2 time-steps, as requests can be fulfilled by
either the local cache (i.e. latency = 0 step) or the server within
one round-trip request (i.e. latency = 2 steps) (Fig. 6(b)). Base
latency in FLoD is somewhat higher, but gradually decreases
to below 4 time-steps, indicating that roughly 2 queries are
attempted before a data request succeeds. The peer hit ratio is
100% for C/S and above 98% for FLoD (Fig. 6(c)). The high
ratio is due to the design that FLoD clients request data from
other peers only after data availability is confirmed.

E. Discussions

Scalability Simulations have shown that FLoD significantly
reduces the server-side bandwidth usage, and bounds the
transmissions for clients. This indicates that P2P-based 3D
streaming can befundamentallymore scalable than client-
server approaches as it is possible to prevent either the server
or clients to become a resource bottleneck.

Distributed visibility determination By pre-partitioning the
NVE into cells and limiting a node’s visibility to its AOI,
visibility determination thus can be done without server in-
volvements. This helps scalability as the server does not need
to calculate visibility for any node in the system.

Peer and piece selectionThe challenge of finding the peers
with relevant content is solved in two stages: 1) A list of AOI
neighbors is obtained by using a P2P-NVE overlay. 2) A FLoD
client would query its neighbors a few times, before requesting
data from the server. This allows some time for a client to
locate the desired contents from its peers, reducing the number
of server requests. The piece selection is a simple sequential
one due to the assumption of linear piece dependency.

Layered framework By separating the main tasks into a
graphics and a networking layer, and defining a clear interface
between them, each layer may thus be independently improved
by experts from both the graphics and networking fields with-
out requiring cross knowledge from other field. For example,
peer and piece selections may be improved independently from
fragmentation techniques.

Limitations In the current design, each node retrieves data
pieces from only their AOI neighbors, which might not be the
complete set of qualified nodes, and sufficiently large number
of peers must be within the AOI for it to work. Efficiency
at matching data requests thus might not be optimal. We also
have not investigated caching or prefetching in depth, however,
they are essential for any streaming scheme to be effective.
We assume piece dependency to be linear, which may be too
strict to exploit enough download parallelism. The display of
other users also has not been considered, but it can be easily
supported as AOI neighbors are already known by each node.
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VI. CONCLUSION

We have formulated a conceptual model for P2P-based 3D
scene streaming, and identified the main tasks as the partition
of scenes, the fragmentation of objects, the prefetching of
potentially visible objects, the prioritization of transmission
order, and the selection of peers and pieces for deliveries. We
have also presented FLoD, a scalable P2P 3D scene streaming
framework where the neighbor discovery mechanism of P2P-
NVE overlays is used to discover and maintain relevant peers
having shared contents. Distributed visibility determination
and peer and piece selection also relieve the server from
intensive computations and transmissions. Simulations show
that FLoD is fundamentally more scalable than client-server
architectures by bounding both the server and the clients’
bandwidth usage. An open source implementation of FLoD
is available at: http://ascend.sourceforge.net.

There are a number of directions for future work:

• Considerations of bandwidth limitations
• Development of more efficient peer and piece selections

with considerations to piece dependency
• Prioritization strategies that differentiate between differ-

ent types of 3D contents
• Accelerated data retrieval from non-AOI neighbors
• Prefetching and caching schemes to mask transfer latency
• Display of other users within the AOI
• Application of FLoD to practical systems

Real-time 3D contents have yet found a way to most
Internet users in spite of years of efforts. While challenges
remain in areas such as format standards and the ease of
content creations, content streaming may effectively address
the delivery problem. 3D streaming on P2P networks thus is
an important topic worthy of the attentions of both graphics
and networking professionals. By identifying the basic issues,
we hope to generate interests in this promising direction to
realize more convenient access to 3D contents.
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