Bandwidth-Aware Peer-to-Peer 3D Streaming

Chien-Hao Chien, Shun-Yun Hu,
Jehn-Ruey Jiang™* and Chuan-Wei Cheng

Department of Computer Science and Information Engineering,
National Central University,

Taiwan, ROC

E-mail: chienhaol@gmail.com

E-mail: syhu@csie.ncu.edu.tw

E-mail: jrjiang@csie.ncu.edu.tw

E-mail: 985202091 @Qcc.ncu.edu.tw

*Corresponding author

Abstract: Peer-to-Peer streaming support for 3D content (i.e., P2P
3D streaming) has recently been proposed to provide affordable and
real-time virtual environment (VE) content delivery. However, the
generally limited client upload bandwidth requires maximal bandwidth
utilization for effective streaming. This paper proposes Bandwidth-
Aware Peer Selection (BAPS), a peer selection strategy that improves
the bandwidth utilization for 3D streaming. BAPS enhances FLoD
(Flowing Level-of-Details), a peer-to-peer 3D streaming scheme, by
avoiding request contention and peer overloading as object and user
densities increase, thus improving both bandwidth utilization and
system scalability. We compare BAPS with FLoD’s strategies that
select from only peers within the area of interest (AOI) as data sources
and do not consider bandwidth capacity. Our evaluation shows that
BAPS achieves better performance in general, and maintains a stable
minimal quality of service (QoS) for streaming, which is important for
commercial applications.

Keywords: P2P; peer-to-peer; virtual environments; 3D streaming;
peer selection.

Biographical notes: Chien-Hao Chien received his Master Degree in
Computer Science in 2009 from National Central University, Taiwan.
His research interests include BitTorrent and peer-to-peer systems.

Shun-Yun Hu is currently a postdoctoral fellow at Academia Sinica,
Taiwan. He received his PhD in Computer Science in 2009 from
National Central University, Taiwan. His main research interests are
networked virtual environments and peer-to-peer systems. He started
the SourceForge project VAST (http://vast.sourceforge.net) in 2005, to
provide open source libraries for creating scalable peer-to-peer-based
virtual environments.

Jehn-Ruey Jiang received his PhD in Computer Science from National
Tsing-Hua University, Taiwan, in 1995. He is currently a professor in
the Department of Computer Science and Information Engineering,

198 C.H. Chien et al.

National Central University, Taiwan, and co-leads Adaptive Computing
and Networking (ACN) Laboratory. He was Guest Editor of
International Journal of Ad Hoc and Ubiquitous Computing
(IJAHUC) and Journal of Information Science and Engineering (JISE).
His research interests include distributed algorithms, peer-to-peer
networked virtual environments, mobile ad hoc networks and wireless
sensor networks.

Chuan-Wei Cheng is currently a Master student in the Department
of Computer Science and Information Engineering at National Central
University, Taiwan. His current research interest is peer-to-peer
systems.

1 Introduction

Networked Virtual Environments (NVEs) are computer simulations that combine
networked communications and 3D graphics techniques to provide immersive and
responsive virtual interactions. Users in an NVE can assume virtual representatives
(or avatars) to interact with each other concurrently. The early military simulator
SIMNET (Singhal and Zyda, 1999), and the recent Massively Multiplayer Online
Games (MMOGs), such as World of Warcraft (WoW)! or Second Life (SL)?, are
all well-known examples of networked virtual environments. Rendering a scene in a
virtual environment (VE) requires a combination of various 3D objects (e.g., mesh
models and textures), currently often obtained from a full installation via a DVD
or a network download. However, downloading and installing the entire content to
local storage might take a long time. To address this issue, the technique of 3D
Streaming has been utilized.

3D Streaming (Mondet et al., 2008; Cheng et al., 2007; Andre et al., 2007;
Chu et al., 2008) refers to the real-time and continuous transmission of 3D
content through networks. Users only need to download the data for rendering a
given scene before navigation, without having to wait for the entire download to
complete. For example, Second Life delivers terabytes of user-generated content
with their 3D streaming technology (Hu et al., 2008). 3D streaming is similar to
media streaming (Magharei and Rejaie, 2007), where users can immediately use
the data when the data is only partially received. Before transmission, the data
also needs to be fragmented into many pieces, so that users will be able to see the
content progressively. However, differences exist between 3D streaming and media
streaming. For instance, video streaming transmits data pieces according to the
time sequence of the video, so the transmission sequence of the pieces is fixed.
On the other hand, 3D streaming transmits data based on 3D objects viewable
to the user, different viewing angles or distances thus would produce individually
different transmission sequences.

If 3D streaming is supported by a client-server (C/S) architecture, then all
content is provided by a central server. When a user requests new data, the
request is sent directly to the central server, waiting for the server’s processing and
response. However, C/S architectures cannot scale easily with user size, because
the bandwidth or computing resources of any given server is often fixed, whereas

Bandwidth-Aware Peer-to-Peer 3D Streaming 199

the number of users might increase with user activities, and may overload the
server’s capacity (e.g., a flash crowd could gather for a concert). When concurrent
requests from users exceed the server’s capacity, the efficiency and quality of
service (QoS) of the system will degrade. To address this problem, peer-to-peer
(P2P) architectures (Hu et al., 2008; Royan et al., 2007; Botev et al., 2008) have
been proposed to support 3D streaming. P2P networks are characterized by the
design where every user (or peer) plays the role of both the provider and the
requester: each user shares data with other users on the network. In other words,
because users can get what they need from other users, the data source is not
limited to the server. With this architecture, total amount of network bandwidth
or computing resources will increase as user size scales, improving the system’s
scalability.

Recent proposals in P2P-based 3D streaming (e.g., Hu et al., 2008; Royan
et al., 2007; Botev et al., 2008) show the benefits of using the P2P architecture
to reduce server load. However, request contention and overloading can occur for
some nodes (Sung et al., 2008), so some users’ bandwidth cannot be properly used
when the data sources are limited to only a few nearby neighbors in the virtual
space.

This motivates us to propose a Bandwidth-Aware Peer Selection (BAPS)
method on the basis of FLoD (Flowing Level-of-Details) (Hu et al., 2008, 2010),
a peer-to-peer 3D streaming scheme, to avoid request contention and overloading.
BAPS was first reported in (Chien et al., 2009). Unlike existing P2P 3D streaming
schemes, BAPS allows users to send requests to neighbors within the AOI (area of
interest) as well as to other users. Therefore, more data sources become available.
Furthermore, BAPS adopts bandwidth reservation and the Tit-for-Tat concept
from BitTorrent® (BT) (Cohen, 2003) to 1) ensure a stable level of quality of
service (QoS); 2) improve bandwidth utilization, and 3) achieve higher scalability.
We verify BAPS with simulations and compare its performance with the original
FLoD to show its advantages.

The rest of the paper is organized as follows. Section 2 describes some related
work. Section 3 defines our problem and describes the expected results; Section 4
proposes our peer selection and piece selection methods; Section 5 presents the
results of the experiments; and conclusions will be given in Section 6.

2 Related Work

In this section, we introduce some related work, including 3D streaming, P2P data
sharing and P2P 3D streaming.

2.1 3D Streaming

With the prevalence of 3D applications, the number of 3D objects accessible
via networks gradually increases. 3D objects are currently distributed by two
strategies: pre-installation and 3d streaming. Below we introduce both of the
strategies.

The pre-installation strategy is widely used in MMOGs. In such a strategy,
objects are obtained from a full pre-installation via a DVD or a network download.

200 C.H. Chien et al.

However, downloading and installing the entire content to local storage might take
a long time. To take the most popular MMOG, World of Warcraft (WoW), for
an example, downloading all its 3D objects of 8GB takes about 10 hours with a
network link of 2Mbps download bandwidth.

Unlike pre-installation, 3D Streaming (Mondet et al., 2008; Cheng et al., 2007;
Andre et al., 2007; Chu et al., 2008) allows users to download only a small portion
of 3D data for rendering a given scene before navigation. For example, Second
Life delivers terabytes of user-generated content with 3D streaming technology (Hu
et al., 2008). In general, 3D streaming can be achieved by two schemes: object
streaming and scene streaming, which are introduced below.

In object streaming, the data of a 3D object are fragmented into one base
piece and many refinement pieces before transmission. After downloading the base
piece, the user can immediately have a coarse view of the object. As time goes by,
refinement pieces are downloaded one by one and the user can have finer and finer
views of the object. The progressive meshes scheme (Hoppe, 1997) is one of the
most famous object streaming schemes. In the scheme, 3D objects are represented
by numerous triangular polygons. The more polygons that represent an object, the
finer the view of the object. Certainly, the finest representation of a 3D object has
the largest number of polygonal meshes, consuming most bandwidth to transmit.
In order to effectively transmit 3D object mesh data, Hoppe proposed an edge
collapse procedure to reduce the number of lines or meshes of 3D objects by
merging adjacent 3D points. By repeatedly executing the edge collapse procedure
on an object, we can derive a very coarse version of the object, which has only a
small number of meshes. And by recording the series of the collapsed edges and
merged points, which are called refinements data, we can retain all meshes by
recovering the original edges and points. Users can download the coarsest version of
meshes as the base piece of the 3D object for fast startup display, while gradually
downloading the series of refinements to have finer rendering of the object.

QSplat (Rusinkiewicz and Levoy, 2001) is another scheme of object streaming,.
It uses a multi-level tree of bounding spheres to represent objects to handle
the visibility culling, level-of-detail control and rendering. Each node in the tree
structure is called a splat. It represents a spherical range and records the sphere
center position, sphere radius, and normal vectors and colors of objects contained
in the sphere. Spheres in a layer can be surrounded by another larger sphere of
the upper layer, while a leaf node of the bottom layer corresponds to a vertex of
the original mesh. The rendering of an object is achieved by traversing the tree in
a breadth first manner from the root with some culling rules. In the hierarchical
structure of the tree, if some node is not visible for the viewer, it and its child
nodes can be culled to increase rendering speed. When deeper nodes are rendered,
the rendering quality becomes better. When all leaf nodes are visited, the complete
details of the object are rendered. In this way, QSplat can serve as a 3D object
streaming scheme.

2.2 P2P Data Sharing

Data sharing is one of the most important applications in peer-to-peer networks.
Below we introduce the well-known peer-to-peer file (or data) sharing protocol,
BitTorrent (BT, Cohen, 2003), from which BAPS borrows ideas. In BT protocol?,

Bandwidth-Aware Peer-to-Peer 3D Streaming 201

a user (or peer) can share a file by first creating a small file called a torrent
containing metadata about the shared file and about the tracker, the computer
that coordinates the file distribution. Users that want to download the file must
first obtain a torrent file for it, and then connect to the specified tracker. The
tracker records all users downloading the file and tells them where to download
the pieces of the file. Users can then contact with each other to exchange the list
of downloaded pieces, and then send requests to download the desired pieces.

BT utilizes some mechanisms, such as Tit-for-Tat (TFT) and Local-Rarest-
First (LRF) to improve file-sharing efficacy. To avoid overwhelming a peer, BT lays
a limit on the maximum number (5 by default) of uploading connections. Each peer
p will check periodically (every 10 seconds by default) if a connecting peer ¢ that
is downloading data from p provides a corresponding bandwidth for p to download
data. If so, p is unchoking with respect to ¢ and continues providing data to ¢. If
not so, p becomes choking with respect to ¢ and does not send data to ¢ (while
holding ¢ in its waiting queue). This is the so-called TFT mechanism. On the
other hand, a peer always sends request to first download the rarest piece among
all connecting peers to keep the completeness of the file. This is the so-called
LRF scheme. To make the newly joining peer can fast obtain the first file piece, a
peer adopt the Optimistic Unchoking Policy to periodically (every 30 seconds by
default) to arbitrarily pick up an extra peer to provide it data.

2.8 P2P 38D Streaming

In this subsection, we introduce FLoD, on which the proposed scheme BAPS is
based. FLoD is a peer-to-peer 3D streaming scheme that allows users to download
3D scene data from other users and to navigate the scene without a full download
of the scene. As shown in Figure 1, FLoD divides the whole virtual world into
fix-sized, indexed regions, where small squares and the star stand for avatars,
‘+’ symbols stand for object centers, and the circle stands for the AOI of the
avatar represented by the star. Each region has an associated scene description
recording the properties, such as the IDs, positions, orientations, scales and piece
information, of all objects within it. When a user enters the virtual world, it first
acquires the scene descriptions of all regions that are covered by its AOI. The
descriptions may be obtained from the server or from the user’s AOI neighbors,
users whose avatars are within the user’s AOIL. Afterwards, the user applies the
piece selection strategy to determine the download priorities of pieces of objects
within the AOI according to the object’s importance, visibility, dependency, and
distance to the user. To make users navigate the scene as soon as possible, base
pieces always have the highest priorities.

A user in FLoD always tries to download object pieces from AOI neighbors
first. The user sends queries to all AOI neighbors and sends a request to an
arbitrary neighbor that replies positively for downloading a desired piece. If the
downloading request is not granted, the user sends a request to another positively
responding neighbor. If no neighbor responds positively, the user then sends a
request to the server for downloading the piece. The query-reply-request-download
handshaking is simple and can avoid redundancy of piece downloading. However,
the queries consume a lot of bandwidth. Furthermore, the user needs to wait for
the replies to the queries and the responses to the requests, which consumes much

202 C.H. Chien et al.

1 2) 3) 4 5)
" e

- o
n
L)

1) "1y 13) 3¢

1) 15)

16) 17) 18) 19)
m L}

Figure 1 Schematic of a Virtual Environment Divided into Fixed-Sized Cells

Figure 2 Original Request Area of FLoD (left) and Multi-level Request (right)

time. The paper in (Sung et al., 2008) proposed that peers proactively exchange
with AOI neighbors the list of available pieces. The exchange of available-piece
lists is performed incrementally, and thus can be performed efficiently. To be more
precise, a user sends to a newly connected AOI neighbor the whole list of available
pieces, and it just sends out the list of additional pieces that it obtains afterwards.
The paper also proposed that users send requests for downloading desired pieces
in a multi-level manner. As shown in Figure 2, instead of sending requests to AOI
neighbors within the whole AOI, the user first sends requests to AOI neighbors in
the most inner circle of AOI. If the requests are not granted, then the user sends
requests to the second inner circle of AOI, and so on. In this way, it is unlikely that
a user gets requests from different users at the same time. Hence, the probability
of request contention becomes lower and the download requests can be granted
faster.

3 Problem Formulation

We formulate our user scenario based on Second Life, as it is a more generalized
model for virtual worlds among current MMOGs. There are two types of network

Bandwidth-Aware Peer-to-Peer 3D Streaming 203

transmissions in Second Life: states and content data. States provide information
about what surrounds the current user, such as the positions of other users and
the placements or status of objects (e.g., how filled is a glass of water, or how
much money an item costs). When a user is aware of the surrounding objects
through the states, requests of the 3D objects (i.e., the content data) can then be
sent to the server. States therefore consist of smaller packets and require higher
responsiveness and security. On the other hand, according to (Liang et al., 2008),
61% to 88% of the network traffic in Second Life is for textures, which is a type
of 3D content. Therefore, to reduce server loading and maximize the number of
concurrent users, the sensible priority is to reduce bandwidth usage due to the
transmission of 3D objects. This paper is based on a former study of FLoD (Hu
et al., 2008, 2010), which is a framework that addresses issues of 3D streaming in a
P2P network. In FLoD, there are two sources for content download: AOI neighbors
and the server. As AOIs may intersect, users can find other users with similar
object interests to form a neighbor group, which can then serve as another source
for content download. When a user wants to download certain objects in the AOI,
the user can send a request to another user who owns the object from the AOI
neighbor group. If there are no AOI neighbors to request, requests are then sent to
the server. However, as there is a limit on concurrent servable requests, a download
might be delayed due to the inability to send or respond to requests. We identify
three problems in FLoD’s basic strategy:

1. Non-server content sources are limited to current AOI neighbors. However,
other non-AOI users who have been in the same area may still possess
the objects of interest. The download thus can be inefficient due to the
insufficiency in content sources.

2. Random peer selection causes bandwidth waste and request jam. It is found
that a naive random peer selection causes users of different upload bandwidth
to carry the same loading (Sung et al., 2008), users of low upload bandwidth
can thus be in a request jam (i.e., receiving requests beyond capacities),
whereas users with high upload bandwidth are idling. Bandwidth thus is not
efficiently allocated.

3. Unstable connections exist between peers. As connections are created and
broken very dynamically according to user movements, the response time
of the content requests cannot be estimated accurately. The quality of
streaming thus would suffer and cannot be consistently guaranteed.

In summary, it is found that getting content from only the AOI neighbors
limits the download sources, and random selection causes unbalanced workload
and request contention. (Sung et al., 2008) propose to solve the above problems by
reserving a list of past AOI neighbors and using a multilevel AOI for the request
areas. However, the work neglects the difference in upload bandwidth between
users and does not assure that the source nodes have sufficient bandwidth to
provide for download. The P2P network thus may not transmit most effectively.
Besides, when the user density is high, even with multi-level AOI requests, users
within a single area might still receive excessive data requests. Therefore, we
propose an improved mechanism with the following objectives:

204 C.H. Chien et al.

Base piece Refin}lement pieces

/o !
I (1(1000000000000OPOR0O0a
I 0000CAEOROACACOROIE

Figure 3 Data Structure of 3D Streaming Object

Objects

1. Develop a bandwidth allocation method to reduce the waiting time to fulfill
download requests and improve the streaming quality.

2. Construct Peer Lists to provide additional data sources, and adopt a
Bandwidth-Aware Peer Selection (BAPS) strategy, so that peer selection is
not limited to only AOI neighbors.

3. Introduce the Tit-for-Tat in BitTorrent (Cohen, 2003) to provide prioritized
download for users with larger upload bandwidth, so that they are able to
provide more data to other users sooner, reducing the server’s loading for
better scalability.

4 Design of BAPS

4.1 Assumptions and Basic Ideas

Based on the ideas of FLoD (Hu et al., 2008, 2010) and the work of (Sung
et al., 2008), we divide a virtual world into several scenes with fixed sizes. Each
scene consists of a scene description with the number of objects and each object’s
placement and size. When a user logins the virtual world, he/she will be informed
of the scene descriptions according to the user’s AOI coverage. In this work we
assume that there is a gateway server to perform this task (i.e., the server notifies
each user the necessary scene descriptions) in order to focus on the P2P aspect of
content exchange. Note that in the original FLoD design, scene descriptions are
provided by a P2P overlay as well. However, as scene descriptions are often much
smaller than the actual content, we assume that they have negligible contribution
to bandwidth and may be performed in either a client-server or P2P fashion.
The required 3D objects are then downloaded according to the scene descriptions.
When new objects are found, a list of required objects is formulated by a Piece
Selection procedure to determine the content pieces to be downloaded and their
priorities. Once a piece is selected, the Peer Selection procedure will find an
appropriate user to request. We describe the procedures below:

1) Piece Selection mainly deals with the transmission priority of piece request.
We first assume that objects in the VE are fragmented into one or several pieces
with Level of Detail (LoD) techniques (Schmalstieg and Schaufler, 1997). As
shown in Figure 3, every object is divided into a base piece (BP), and many
refinement pieces (RP), where successive pieces depend on the previous ones, so
every 3D object can be transmitted as a streaming content. When a user has
downloaded a base piece, the object can be seen in its rough outline; and if the

Bandwidth-Aware Peer-to-Peer 3D Streaming 205

download continues, then the object will appear more refined. According to the
nature of virtual world, Piece Selection prioritizes the download order with two
considerations: (1) visual contribution of the piece and (2) object proximity in the
virtual world.

As 3D objects are displayed progressively, BP has to be downloaded before
showing RP;, and R;_; is required before R;. So, download priority depends on
the piece number, where pieces with smaller numbers are downloaded first.

Pr(Piece;) = w(Piece;)/dist(Object 4)

We thus define the priority Pr of Piece; of Object 4 as above, where w(Piece;)
indicates the visual contribution (or weight) of the piece, and dist(Objecta)
represents the virtual distance between Object, and the user. Higher Pr values
indicate higher priorities. When a user has to transmit several pieces at the same
time, this value would help to decide which data piece has higher priority.

2) Peer Selection decides to whom a request is sent. In P2P 3D streaming, in
order to provide a good navigation, the system should focus on the timeliness of
piece download. To reduce waiting time, we propose to use bandwidth reservation
to allow requests be served as soon as they are received. We realize that if
content sources are limited to AOI neighbors, insufficient downloadable sources
and request jam may result. To solve these problems, we propose Bandwidth-Aware
Peer Selection (BAPS), which includes Bandwidth Allocation and Multi-Source
Selection, to help users allocating bandwidth properly and finding appropriate
content providers. Similar to other media streaming, 3D streaming should assure a
stable streaming quality, which can be achieved by avoiding excessive waiting time
on piece requests. Considering that in residential networks, bandwidth resources
are often limited and asymmetric for upload and download, we thus lower the
allowable requests for users with lower bandwidth in order to avoid jamming in the
requests. For users with higher bandwidth, we should also allocate the bandwidth
efficiently to avoid resource idling. By using pre-allocation, the upload bandwidth
of a user is divided into several comnection channels of identical sizes. When a
requester asks a peer for content, a connection channel is created first, where the
provider will reserve some upload bandwidth, so that requests will not be delayed
due to request jam. If enough bandwidth cannot be allocated, the requester is
denied connection and may need to look elsewhere for other peers. Each channel
is constantly monitored to make sure that it is occupied. If channels sit idle for
a system-defined time, the channel is recycled for other users. As object pieces
are linearly dependent, when a user makes requests to some peers, it means that
their AOIs have been overlapped at some time (past or present) and include the
same objects. The provider thus is likely to own other content pieces needed by the
requester. By reserving bandwidth at the provider, the request flow can be kept
smooth and continuous (i.e., similar to a pipeline), which increases its efficiency.

4.2 BAPS Algorithm

We now describe BAPS in more details according to the main stages in P2P 3D
streaming (Hu et al., 2010):

1) Object Discovery: Before performing the piece and peer selections, our first
task is to identify which objects are within the user’s view and thus are relevant

206 C.H. Chien et al.

to download. This is achieved by reading the scene descriptions obtained from the
central server. As object discovery is not our main focus, we assume that such a
simple method would suffice. If dynamic object creation / deletion / update were
to be supported, then a more sophisticated mechanism can be used.

2) Source Discovery: To improve the source insufficiency due to requesting
from only AOI neighbors, a Peer List is also included in the scene description,
which describes the users who have ever downloaded the scene. The Peer List
is constructed by the gateway server, which logs the users who request for each
scene descriptions. So when other users request the scene descriptions, the server
can randomly select some users who have requested the same scene description
previously into the Peer List. Users can learn from the list about other users who
have ever accessed the scene. This way, the potential sources for peer selection is
increased. A new Peer List is obtained each time a scene is entered; however, for a
given scene the list is not updated by the user unless the sources are too few. AOI
neighbors, on the other hand, is updated continuously from the P2P overlay, and
may reflect the sources more timely.

3) State Exchange: This step includes connection request and state exchange.
After knowing who are the content sources, we then need to know which peers
own the required data pieces by exchanging some simple states (Sung et al., 2008).
We adopt the proactive push-based distribution of such meta states on piece
availability (as proposed in Bharambe et al., 2006; Xie et al., 2007) to save the
time on state exchange, and a passive pull-based method for the later content
exchange (which tolerates more latency). In order to inform existing connected
peers on the availability of pieces, we specify the state exchange peers as both the
AOI neighbors and peers with established connected channels. When a user comes
to a new scene which it has no knowledge of, it would connect with some randomly
selected peers from the Peer List and AOI neighbors. Otherwise, the user will only
connect with peers who are known to possess the desired content. When the size
of known peers is lower than a pre-defined value, the server is asked to provide a
new Peer List.

4) Content Exchange: This is the main stage where piece selection and peer
selection are performed. We determine the request rp; for piece p; according to the
Piece Selection policy as follows. If set A represents all the owners of p; among
known users; set B represents the known owners of p; in the connected channels;
and set C is the owners of p; in AOI neighbors. As users in set B have reserved
bandwidth for incoming requests, when a piece request is sent to any peer in set
B, it will immediately be served without being delayed due to too many requests.
We choose from set B a content provider who has not yet reached the maximum
supportable requests. If no provider is found in set B, then we pick a source from
set C. When no appropriate provider is found either in set B or set C, we examine
whether we meet the Server Request Condition (Hu et al., 2008). If so, we send
a request to the server. In case we fail to find anyone to request, that means the
total system resource is insufficient, and we would randomly select a few users in
set A to ask for new connections.

When a provider receives a piece request, it should immediately decide whether
to serve the request. In the original FLoD, the piece request procedure uses the
first come first serve model, or FCFS. The benefit of this model is an equal
opportunity for all requesters. Thus, the requested loading is evenly distributed.

Bandwidth-Aware Peer-to-Peer 3D Streaming 207

Table 1 Simulation Parameters

World dimension (units) 1000 x 1000
Cell size (units) 100 x 100
AOQI-radius (units) 100
Time-steps (10 steps = 1 sec) 1500
Object Size (KB) 100 — 300
Piece Size (KB) 5
Percentage of Base Piece 10%
Server Download/Upload Limit (KB) | 1000/1000

Table 2 User Bandwidth Distribution

download (KB/sec) upload (KB/sec) Node Fraction

96 10 0.05
187 30 0.45
375 100 0.40

1250 625 0.10

However, the FCFS model offers the same opportunity for users with high upload
and users with low upload bandwidth, making the high capacity users to have
idle bandwidth resource while unable to distribute content to others (called a
content bottleneck Magharei and Rejaie, 2007). To improve such scenario, when a
requester asks for a connection channel, if the provider is fully loaded, connection
preference is given to peers who have contributed more content, using a Tit-for-
Tat policy (Cohen, 2003). By Tit-for-Tat, we mean that if a remote peer has
provided adequate responses (i.e., upload) to the provider recently, then preference
will be given to this remote peer to establish a connection channel. Note that the
contribution is not accumulated but rather recent contribution within a certain
time period, so both the remote peer’s capacity and content availability are
considered in such an approach. When connections are fully loaded, those with
lower transmissions will be suspended, so that higher contributing peers (which
may more likely be high capacity peers) can obtain content faster and serve sooner.

5 Ewvaluation

This section describes the evaluation of BAPS via simulations. We first present
the simulation environment and methods, followed by the metrics used and result
analysis. Our experiment is based on the FLoD architecture and procedures (Hu
et al., 2008), where users, represented as nodes on a 2D plane, are simulated to
move for a certain number of time-steps under a clustering movement pattern (i.e.,
nodes would move near certain hotspots with a high probability, Hu et al., 2008).
One experiment case is run 10 times for obtaining average simulation results. Each
node needs to obtain the scene description of the cells that its AOI covers, before

208 C.H. Chien et al.

requesting the objects located in each cell. Please see Table 1 for the simulation
parameters. At the initialization phase, all 3D objects are placed randomly in the
VE, and the object sizes are between 100KB to 300KB. During the experiment,
different number of nodes are created (e.g., from 50 to 500) to represent users
of the virtual world. Similar to the objects, their placements are random. At the
beginning, all nodes remain at the initial positions until 99% of the initial AOI
objects are downloaded. This assures that users are equipped with some content
to exchange with others before their movements start. We can thus focus on the
steady state behaviors during data distribution. The user bandwidth allocation is
set as in (Bharambe et al., 2006) (see Table 2) to simulate a real environment,
so that we may examine the performance of different algorithms under a realistic
bandwidth distribution. Note that for the comparisons below, the same bandwidth
limits are applied for both the original FLoD scheme and BAPS for evaluation.

To simplify the simulation and focus on the effects caused by different
numbers of peers and objects, we assume peers have an unlimited cache size. The
assumption is justified by the FLoD designers’ observation that cache sizes over
a certain critical value would not affect the actual performance much, as long as
a minimal amount of cache is provided. We have observed BAPS has the similar
property. For example, Figures 4 and 5 show that BAPS has similar fill ratios
and base piece latencies (two major performance metrics which will be defined in
the next subsection) when peers have a cache size that can accommodate over
8 times the number of objects expected to appear in the AOI for the cases of
100 and 200 peers with 300 objects. A peer is said to have a k-AOI cache size if
its cache size equals to k * (TotalObjectSize/WorldArea) x AOI Area. Therefore,
when peers have an over 8-AOI (i.e., 14.67 MB) cache size, the system performance
is pretty good for the above-mentioned cases. A peer stores all object data into
cache for efficient object display and quick response to object download request.
When cache is full, objects are replaced in the farthest-object-first manner. To
further simplify our comparisons, there is no direct comparison made with another
FLoD enhancement (Sung et al., 2008). The main reason is that of the two
main improvements in (Sung et al., 2008), the idea to actively exchange content
availability information is already incorporated in BAPS; while the benefits of
multi-level AOI requests is not significant as compared with random request in the
original FLoD (see Sung et al., 2008). We thus note that our work complements
the work of Sung et al. to provide additional enhancements.

5.1 Metrics

The following metrics are used for performance evaluation:

Server Request Ratio (SRR): Data pieces are requested from both peers
and the server, but when a peer provider cannot be found and the Server Request
Condition is matched, the user can request from the server. The proportion of
pieces (in data size) obtained from the server is described in percentage as Server
Request Ratio (SRR). Lower SRR means lower loading for the server and better
system scalability.

Fill Ratio: To evaluate the visual quality of a scene, a simple quantity is to
measure the ratio between successfully downloaded content and the total interested

Bandwidth-Aware Peer-to-Peer 3D Streaming

Peers

AOT-sized STD”

100

[\)

2.16
2.72
3.31
3.24
3.25
1.87
3.04
3.01
3.01

© 00~ O Uk W

—
o

3 4 5 6 7 8 9 10
k-AOI Cache Size (k=2-10) =4=—100 Peers
=200 Peers

200

3.14
1.92
2.21
3.3
2.44
2.38

00 J O Ui W N

Ne}

10

2.12
2.23
2.33

" STD: stands for standard

deviation

Figure 4 Average Fill Ratio for Different Cache Sizes (BAPS)

Base Piece Latency (step)

k-AOI Cache Size (k=2-10)

=¢=—MAX_LATENCY =fli=MIN_LATENCY

AVG_LATENCY

Figure 5 Average Base Latency for Different Cache Sizes (BAPS)

209

(i.e., within AOI) content (in size). A higher ratio means a more sophisticated 3D
scene and thus a better visual quality.

Base-Piece Fill Ratio: This metric is defined to be the ratio of the number of

view of the scene.

displayable objects over the total number of objects within AOI, where displayable
objects stand for the objects whose base pieces have been downloaded. A higher
ratio means a scene displaying more objects, which in turn leads to a better coarse

210 C.H. Chien et al.

Server Request Ratio (%)

25%

20%

15%

10%

5%

0%

50

Methods Objects Max% Min% STD

/ BAPS 100 79.01 0 8.59

200 76.0 1.0 9.91

300 75.04 2.02 10.92

/"“ 400 7401 4.06 12.92

500 73.04 5.0 13.13

// FLoD 100 100 0 13.13
200 100 0 14.89

300 100 3.01 14.89

100 150 200 250 300 350 400 450 500 400 100 6.1 15.32
Number of Objects g gASP —@—=FLoD 500 100 6.1 15.66

Figure 6 Average Server Request Ratio (SRR) for Different Numbers of Objects

Request Latency: The delay between sending a piece request to acquiring
the piece shows the efficiency of request serving and whether there is a request
jam. Here we focus on the latency for the first (base) piece (i.e., base latency), as
it shows how quickly a user may start navigation in a scene. Note that while the
completion latency (Hu et al., 2008) (i.e., when an object is fully downloaded) is
also important, but because we simulate constantly moving nodes, the completion
latency may not be measured for all objects.

5.2 Performance Analysis

In the following simulations, we use two setups to evaluate bandwidth utilization
and the system’s scalability: (1) Fixed user size and movement paths to maintain
the same available bandwidth, while adjusting object quantities to evaluate
bandwidth utilization; (2) Fixed object placements and quantities with varying
user sizes to evaluate the system’s scalability. Finally, we evaluate the streaming
quality with time-series in how fill ratio changes.

Bandwidth utilization: In a P2P network, data pieces are obtained from both
server and peers. When users cannot find appropriate sources in the P2P network,
the request is shifted to server. So if the SRR is high, then the P2P network may
be under-utilized. By maintaining the same user size (100 peers) and movement
paths while varying the object size (from 100 up to 500), we test the performance
under different workloads. M objects are randomly placed in the VE, whose sizes
are D;|i =1,2,3,..., M. The total content size thus is: Zf\il D;, which is also
the maximum downloadable volume for a user. The average downloadable volume
in AOI is shown as (AOIArea/WorldArea) Zf\il D;. For example, when 300
objects with an average size of 200KB exist, there will be a total of 60 MB of
content, and the average AOI content size is 1.88MB.

As shown in Figure 6, when the content sources are extended from AOQOI
neighbors to Peer List neighbors, under our strategy and the same number of
objects, the server’s loading reduces 59.8% on average. For example, when there
are 200 objects, the SRR is 14.6% in FLoD but only 8.6% in BAPS, which is about
a 55.9% reduction on server loading; when there are 500 objects, the reduction
rate becomes 66.2%.

Bandwidth-Aware Peer-to-Peer 3D Streaming 211
ZZ: — Methods Objects STD
ason B BAPS 100 12.31
N 200 15.58
% 5% o 300 17.29
B ou 400 18.47
% esx \.\ 500 19.36
60% FLoD 100 20.08
so = 200 24.63
50% 300 26.17
50 100 150 200 250 300 350 400 450 500 400 24.94
Number of Objects _o_gASP —@=FLoD 500 23.92
Figure 7 Average Fill Ratio for Different Numbers of Objects
80 Methods Objects Max Min STD
= ° / BAPS 100 14.35 1 0.8
3 e / 200 1158 1 0.92
g 0 g 300 1173 1 131
é 40 / 400 21.22 1 2.26
& 30 500 21.78 1 2.75
8 20 — FLoD 100 1602 1 2659
0w . 200 31154 1 75.05
o e——— 300 44085 1 121.95
50 100 150 200 250 300 350 400 450 500 400 593.11 1 179.07
Number of Objects —qo— pAPS ——FLoD 500 740.38 1 235.69

Figure 8 Base Latency for Different Numbers of Objects

The server loading is efficiently reduced with multiple sources and the improved
peer selection. However, we also need to know the bandwidth overhead of using
Peer Lists. It is found that Peer Lists take 4.3% in the entire transmission, and
the proportion increases with the number of objects. This shows that its cost is
acceptable, but also indicates that as the object quantity grows, AOI neighbors

will not provide sufficiently, and requests for Peer Lists would increase.

As for the fill ratio, Figure 7 shows that the fill ratio reduction in FLoD
is higher than BAPS. When there are 100 objects, the fill ratio in FLoD is
87.5%, and when the object size increases to 500, the fill ratio is reduced to
55.7% with a reduction rate of 31.8%. So as object density increases, bandwidth
becomes insufficient and the fill ratio suffers. As for BAPS, the fill ratio is reduced
from 92.5% to 75.1%, which is 17% less compared to FLoD. Consequently, given
identical bandwidth, BAPS is able to provide better utilization with a lower

reduction in fill ratio.

Figure 8 shows the latency for getting the base piece (i.e., the base latency, Hu
et al., 2008), where the base piece is 10% of object size. We note that as object
size increases, it takes more time to get the base piece. The latency curve of FLoD,
however, grows noticeably faster than BAPS. It is likely due to the limited content
sources and random peer selection in FLoD, as requests are distributed evenly

212 C.H. Chien et al.

Methods Objects Max Min STD

BAPS 100 80.08 3.06 124
150 78.08 3.03 10.96
% 200 79.04 2.01 9.77
< 20% [§ 250 65.05 1.05 7.57
2 \ 300 64.06 1.03 7.23
2 15% 350 73.08 0.02 7.47
g 400 100 0.04 8.97
%’10% 450 100 0.02 8.86
§ o FLoD 100 79.02 0 16.97
150 81.05 0 14.46
0% 200 79.09 0 12.07
50 100 150 200 250 300 350 400 450 500 250 66.1 0 9.62
Number of Peers —0—BASP —@—FLoD 300 75.01 0 9.65
350 76.1 0 8.96
400 85.02 0 8.83
450 85.02 0 8.83
Figure 9 Average Server Request Ratio (SRR) for Different Numbers of Peers
Methods Objects STD
BAPS 100 14.89
150 15.5
el D 200 16.24
8% R — 250 16.33
8% —a——a—a——a—a 300 16.68
& 75% 350 16.96
§ 7% 400 17.04
£ 65% 450 16.95
60% FLoD 100 23.22
55% 150 24.69
50% 200 25.94
50 100 150 200 250 300 350 400 450 500 250 26.22
Number of Peers = BASP =fl=FLoD 300 26.86
350 27.24
400 28.04
450 28.04

Figure 10 Average Fill Ratio for Different Numbers of Peers

to all peers, even those with low bandwidth. With BAPS, not only base piece
download is prioritized, bandwidth is also reserved for base piece requests to ensure
that users can obtain them faster.

System Scalability: We simulate different number of peers to evaluate the
scalability of the system, while fixing the object size at 300. When users are unable
to obtain content from peers, requests are shifted to the server. So we need to
observe whether server loading increases as the number of user scales. Figure 9
shows the percentage of data obtained from the server in FLoD and BAPS. When

40.00%

20.00%

0.00%

== = MAX_FILL_RATIO =mee MIN_FILL_RATIO

800 1000 1200 1400

steps
AVG_FILL_RATIO

40.00%

20.00%

0.00%

Bandwidth-Aware Peer-to-Peer 3D Streaming 213
Methods Objects Max Min STD
BAPS 100 11.28 1 0.94
150 21.28 1 1.85
% 200 20.94 1 1.8
3 2 - a——w 250 20.95 1 1.84
8 300 21.58 1 1.89
g 15 350 31.2 1 297
5 400 30.55 1 2.92
g 450 30 1 288
. FLoD 100 340 1 86.22
® ————————— 150 40131 1 107.64
0 200 421.08 1 114.29
50 100 150 200 250 300 350 400 450 500 250 418.47 1 113.63
Number of Peers o pASp —m—FLoD 300 440.1 1 121.42
350 435.32 1 120.78
400 455.692 1 127.43
450 455.69 1 127.43
Figure 11 Average Base Latency for Different Numbers of Peers
120.00% 120.00%
100.00% ," e 100.00% i
_ 80.00% - _80.00% [{—
S ! 8
g 60.00% " /\ ;g 60.00% A

%

<%

=== MAX_FILL_RATIO

200 400

600 800

steps
MIN_FILL_RATIO

1000 1200

1400

AVG_FILL_RATIO

(a) Fill Ratio Time-Series for FLoD

Figure 12 Fill Ratio Time-Series (fixed at 100 peers)

(b) Fill Ratio Time-Series for BAPS

user size increases, FLoD and BAPS both reduces server loading. But for BAPS
the server request ratio is even lower. Figure 10 shows the average fill ratio after
1500 time-steps. The more limited content sources produce the lower fill ratio for
FLoD. Figure 11 shows the comparisons in base latency. We can easily observe the
difference in performance from Figure 10 and Figure 11. One observation is that
both FLoD and BAPS can effectively relive server loads and maintain relatively
stable performances as user scales. However, BAPS in general achieves better
performance, as connection channels are created to provide better guarantee on
request latency.

Streaming Quality: Figure 12(a) and Figure 12(b) show the time-series of fill
ratio under 100 peers and 300 objects. Here we see the general trend of the fill

214 C.H. Chien et al.

100%
0%
80% -
70% -
60% -
50%
40%
30%
20% -
10% -
0% -
0 20 40 60 80 100 120 140

Base Piece Fill Ratio %

steps
BAPS - 125 peers FLoD - 125 peers ==&= BAPS - 250 peers

=@« FLoD - 250 peers e====BAPS - 500 peers =<« FLoD - 500 peers

Figure 13 Base Piece Fill Ratio Time-series with 250 Objects

ratio first increases for some period, then decreases as peers start to move after
the overall fill ratio has reached 99%. This is to ensure that peers have enough
initial content to share. The fill ratio restores with time, because when peers obtain
more pieces, sharing also becomes more effective. We see that FLoD takes more
time to stabilize, and when users begin to move, the fill ratio decreases more
significantly than in BAPS. In these figures, we show the maximum / average
/ minimum fill ratios achieved among all users. A fast increase in maximum fill
ratio indicates the effective use of the Tit-for-Tat policy. It preferentially connects
with peers with more contribution and suspends non-performing channels. The
minimum fill ratio indicates the worst streaming quality a user may experience.
An important observation from Figure 12(b) is that by reducing request jam, a
more stable streaming is achieved even for worse case scenarios. For commercial
providers, such minimal QoS guarantee can be important to ensure a basic level of
user satisfaction.

Figure 13 and Figure 14 show the time-series of base-piece fill ratio under the
cases of 125, 250 and 500 peers, and the cases of 250 and 500 objects. Note that we
just depict the first 150 steps in the figures because all the curves reach 100% for
almost all the cases after 150 steps. We see that more objects or more peers lead to
worse ratios. This is because in the first 100 steps, many pieces are still provided
by the server, so more time is needed to serve more peers with more objects. We
can also see that BAPS has better base-piece fill ratios than FLoD. This means
BAPS can render more base pieces of the scene than FLoD. Therefore, users will
feel that newly-encountered objects are rendered faster in BAPS than in FLoD.

6 Conclusion

FLoD demonstrates the possibility of progressive 3D content streaming in a
P2P network. In this paper, we propose a Bandwidth-Aware Peer Selection
(BAPS) method that reduces the request latency by having bandwidth allocation
channels and more content sources beyond AOI neighbors. We perform simulation

Bandwidth-Aware Peer-to-Peer 3D Streaming 215

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30%
20%
10% -

0% -

Base Piece Fill Ratio %

60 80 100 120 140

o
nN
o
N
o

steps
BAPS - 125 peers FLoD - 125 peers —==e== BAPS - 250 peers

=@« FLoD - 250 peers e==i==BAPS - 500 peers =<« FLoD - 500 peers

Figure 14 Base Piece Fill Ratio Time-series with 500 Objects

experiments to evaluate BAPS and FLoD in terms of the server request ratio, fill
ratio, base-piece fill ratio, and request latency. The simulation results show that
when content sources are limited, source insufficiency and request jam can occur.
Such insufficiency is mitigated by BAPS with the adoption of peer lists provided
by the server. To make high capacity users contribute more, we use BitTorrent’s
Tit-for-Tat peer selection strategy to determine the peers to form connection
channels. Future improvements to BAPS include a more distributed approach to
maintain the Peer List (instead of relying on server), as maintaining Peer List
can be a potential bottleneck for the server. We would also like to evaluate our
strategies using more realistic user-traces or behaviors. Empirical comparisons of
BAPS and real systems (e.g., Second Life) are also considered as future work.
The comparisons are challenging since BAPS needs accurate end-to-end available
bandwidth determination for implementation.

References

A. Andre, S. Saito, and M. Nakajima. (2007) ‘Adaptive 3d content for multiplatform
on-line games’, Proceedings of the 2007 International Conference on Cyberworlds,
Washington, USA, pp.194-201.

A. Bharambe, C. Herley, and V. Padmanabhan. (2006) ‘Analyzing and improving
a bittorrent networks performance mechanisms’, Proceedings of the 25th IEEE
International Conference on Computer Communications (INFOCOM 2006),
Barcelona, Spain, pp.1-12.

J. Botev, A. Hohfeld, H. Schloss, I. Scholtes, and M. Esch. (2008) ‘The hyperverse:
concepts for a federated and torrent-based “3d web”’, International Journal of
Advanced Media and Communication (IJAMC), Vol. 2, No. 4, pp.331-350.

W. Cheng and W.T. Ooi and S. Mondet and R. Grigoras and G. Morin. (2007)
‘An analytical model for progressive mesh streaming’, Proceedings of the 15th
international conference on Multimedia (ACM Multimedia), New York, USA,
pp.737-746.

216 C.H. Chien et al.

C.-H. Chien and S.-Y. Hu and J.-R. Jiang (2009) ‘Bandwidth-Aware Peer-to-Peer 3D
Streaming’, Proceedings of Network and Systems Support for Games (NetGames
2009), Paris, pp.1-6.

C.-H. Chu, Y.-H. Chan, and P. Wu. (2008) ‘3d streaming based on multilod models for
networked collaborative design’, Computers in Industry, Vol. 59, No. 9, pp.863-872.

B. Cohen. (2003) ‘Incentives build robustness in bittorrent’, Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems.

S.--Y. Hu and T.-H. Huangy and S.-C. Chang and W.-L. Sung and J.-R. Jiang and
B.-Y. Chen. (2008) ‘Flod: A framework for peer-to-peer 3d streaming’, Proceedings
of the 27th Conference on Computer Communications (INFOCOM), Phoenix, AZ,
pp.1373-1381.

S.-Y. Hu and J.-R. Jiang and B.-Y. Chen. (2010) ‘Peer-to-peer 3d streaming’, IEEFE
Internet Computing, Vol. 14, No. 2, pp.54-61.

H. Hoppe. (1997) ‘View-dependent refinement of progressive meshes’, Proceedings of the
2/th annual conference on Computer graphics and interactive techniques, New York,
USA, pp.189-198.

H. Liang and M. Motani and W.T. Ooi. (2008) ‘Texture in second life: Measurement and
analysis’, Proceedings of the 2008 14th IEEE International Conference on Parallel
and Distributed Systems, Washington, USA, pp.823-828.

N. Magharei and R. Rejaie. (2007) ‘Prime: Peer-to-peer receiver-driven mesh-based
streaming’, Proceedings of the 26th IEEE International Conference on Computer
Communications (INFOCOM 2007), Anchorage, Alaska, pp.1415-1423.

S. Mondet and W. Cheng and G. Morin and R. Grigoras and F. Boudon and W.T. Ooi.
(2008) ‘Streaming of plants in distributed virtual environments’, Proceedings of the
16th ACM international conference on Multimedia (ACM Multimedia), New York,
USA, pp.1-10.

J. Royan, P. Gioia, R. Cavagna, and C. Bouville. (2007) ‘Network-based visualization of
3d landscapes and city models’, IEEE Computer Graphics and Applications (IEEE
CGé&A), Vol. 27, No. 6, pp.70-79.

S. Rusinkiewicz and M. Levoy. (2001) ‘Streaming QSplat: a viewer for networked
visualization of large, dense models’, Proceedings of the 2001 symposium on
Interactive 3D graphics, New York, USA, pp.63-68.

D. Schmalstieg and G. Schaufler. (1997) ‘Smooth levels of detail’, Proceedings of the 1997
Virtual Reality Annual International Symposium (VRAIS ’97), Washington, USA,
pp.12-19.

S. Singhal and M. Zyda. (1999) Networked Virtual Environments: Design and
Implementation. ACM Press.

W. L. Sung, S. Y. Hu, and J. R. Jiang. (2008) ‘Selection strategies for peer-to-peer
3d streaming’, Proceedings of the 18th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV), New York,
USA, pp.15-20.

S. Xie and B. Li and G.Y. Keung and X. Zhang. (2007) ‘Coolstreaming: Design, theory,
and practice. multimedia’, IEEE Transactions on Multimedia (IEEE TMM), Vol. 9,
No. 8, pp.1661-1671.

Bandwidth-Aware Peer-to-Peer 3D Streaming 217
Note

"http:/ /www.worldofwarcraft.com
http:/ /www.secondlife.com
3http://bittorrent.com

“http:/ /en.wikipedia.org/wiki/BitTorrent_(protocol)

