
Discovery of Physical Neighbors for
P2P 3D Streaming

Chang-Hua Wu, Shun-Yun Hu, Li-Ming Tseng
Department of Computer Science and Information Engineering

National Central University, Taiwan, R.O.C.
johnny@dslab.csie.ncu.edu.tw, syhu@csie.ncu.edu.tw, tsenglm@cc.ncu.edu.tw

Abstract— Many peer-to-peer-based virtual environment (P2P-
VE) solutions have been proposed recently to improve the
scalability of distributed virtual environment (VE) systems. By
organizing peers to realize neighbor discovery through mutual
peer collaboration, P2P-VEs allow systems to scale without
additional server provision. Related services such as the real-time
delivery of 3D content (i.e., 3D streaming) can also be supported
with P2P approaches. However, the selection of peer connections
based purely on logical neighbors in the virtual world may cause
serious latencies. Accordingly, we propose Discovery of Physical
Neighbor (DPN) that groups peers with physical proximity
together to reduce the latencies among peer communications. The
maintenance of DPN is distributed among the peers via
cooperation. We also evaluate our approach on P2P-based 3D
streaming via simulations to verify DPN’s effectiveness

Keywords-networked virtual environment, peer-to-peer network,
3D streaming, locality-aware, landmark.

I. INTRODUCTION
Networked virtual environments (VEs) [1] are Internet

applications that combine virtual reality with networking to
provide immersive experiences to people. VEs were developed
as military simulators in the 1980s and have evolved to
Massively Multiplayer Online Games (MMOGs) in the mid-
1990s. Today, MMOGs are the most popular form of VEs and
have become a multi-billion dollar industry. In order to build
graphically realistic VEs, most MMOGs contain a lot of 3D
content (e.g., the most popular World of Warcraft is over 5 GB).
Existing MMOGs predominantly require users to pre-install the
content. However, as content size grows into the range of
terabytes (e.g., the social MMOG Second Life has over 34 TB
of content in 2007), pre-installation will no longer be a viable
approach. The real-time streaming of 3D content (or 3D
streaming) thus may become important in the near future. As
more people are attracted to VEs, the rapid growth of large-
scale VEs has introduced serious challenges to existing
network architectures. Bringing additional resources to the
system with each user joined is the advantage of peer-to-peer
(P2P) architectures as an alternative solution that may solve the
scalability problem of large-scale VEs.

P2P architecture differs from client-server architecture in
that the basic units are commodity PCs with equivalent
functionality. Due to P2P’s scalability and affordability, many
P2P-based VE (P2P-VE) designs are recently proposed [2],
solving problems from neighbor discovery to content delivery.
However, when peers or neighbors in the P2P network are
selected without considering physical distances, serious latency
may result for the system. Considering the characteristics of
P2P-VEs, we thus propose a method called Discovery of
Physical Neighbor (DPN). We separate the peers into several
groups according to physical proximity, and then maintain each
group with a tree architecture formed by user nodes to alleviate
the loading of the server. We evaluate our design in the support
of P2P-based 3D streaming, as it is both volume-intensive and
latency-sensitive. To get the content as soon as possible, we
also design priorities for content delivery, and evaluate our
method via simulations. The rest of the paper is organized as
follows: Section II discusses related work, and we present DPN
in Section III. To evaluate DPN, Section IV describes the
related simulations. Finally, conclusions are given in Section V.

II. RELATED WORK

A. P2P-VE and 3D streaming
VEs are virtual worlds where each user interacts with other

human or computer players with a virtual identity called avatar.
Similar to the real world, participants may perform different
actions such as moving to new locations, looking around at the
surroundings, using items to perform tasks, etc. In the real
world, although many users and events may exist, each user is
only affected by nearby users or events. Thus, we can exploit
this fact with a fundamental concept called area of interest
(AOI) in a generalized VE. Users can be conceptually seen as
coordinate points on a 2D plane (as nodes), each with a limited
visibility range. Because each node’s AOI is limited, the
desired interaction or content is localized and easily identified.
The basic premise for P2P-VEs thus is that given a node’s
position and AOI, all neighboring nodes within the AOI can be
known for interactions. If these AOI neighbors can be properly
discovered without the server’s involvement, the system can
scale and provide various additional services (e.g., state
management [3] and content management [4]).

The main problem in content management is to allow each
user see the 3D content within the AOI in a timely manner.
While download-and-play can easily achieve this goal, users
may prefer to enter the VE quickly without waiting. 3D
streaming [5] techniques thus have been proposed for the
progressive transmission of content. Similar to audio or video
media streaming [6], 3D content needs to be fragmented into
pieces at a server, before it can be transmitted, reconstructed,
and displayed at the clients. But unlike media streaming, as
user interests depend on the positions and paths in the VE, the
streaming sequences vary from user to user and require
individualized visibility calculations. FLoD [7] describes the
first framework for P2P 3D streaming [4], where by utilizing
the often overlapped visibility among AOI neighbors, if content
is requested from the neighbors first, the server’s workload
may be much relieved. To properly discover and maintain the
neighbors, FLoD utilizes a P2P overlay called VON [8].

To help the clients learn of the objects in view, the world is
first partitioned into square cells [9]. Each cell has a small
scene description that specifies the objects within. Each 3D
object is specified by a unique ID, location point, orientation
and scale within the scene description. Determining the visible
objects can thus be done in a fully distributed manner, as each
node is able to locally determine the cells covered by its AOI.
In Figure 1, the red circle is the AOI of the star node, and
triangles are other user nodes. Various shapes are 3D objects,
with their location points as dots. When entering a new area, a
client first prepares a scene request to obtain scene descriptions
from its AOI neighbors or the server. Data pieces for AOI
objects are then requested. This process of content request is
repeated iteratively as a client moves around. Note that for our
discussions, each node is only concerned with getting the 3D
objects for display. The management of other object states (e.g.,
health and experience points of an avatar) is beyond our scope.

Figure 1. The world model of FLoD [7]

B. Locality-Awareness
In the context of P2P-VE systems, we refer to locality

awareness as considering physical distances among the peers
in terms of latencies. Two popular ways to measure latency in
networks are hop count and round-trip time (RTT). Because
geographic proximities (i.e., hop count) sometimes do not
equal to actual delays (i.e., network distances), and RTT
considers both network and processing delay, we will adopt
RTT as our main distance metric. In practice, it is also more
efficient to use RTT to estimate the latencies between end-to-
end nodes [10].

Several methods for RTT estimations exist. Hsieh’s method
[11] finds nearest neighbors in a replication-aware P2P-CDN
by binning. Binning [12] is an approach where nodes partition
themselves into bins such that the nodes in a given bin are
relatively close to one another in terms of network latency. A
distributed binning scheme can be incorporated into distributed
systems such as P2P networks and content distribution systems.
Binning requires a set of well known landmark machines
spread across the Internet. An application node measures its
distance by RTT to the landmarks and independently selects a
particular bin based on these measurements. A node’s RTT
measurements to each landmark offer two kinds of information:
1) the relative distance of different landmarks from the given
node and 2) the absolute values of these distances. Figure 2
shows how the distances are measured with a specific example:

The relative distance: we try to augment the landmark
ordering of a node with a level vector, where each landmark
has a corresponding level number. For example, if Node A’s
distances to landmarks L1, L2, and L3 are 232ms, 51ms and
117ms respectively. Its ordering of the landmarks is “L2L3L1”.

The absolute distance: Here the range of possible latencies are
divided into 3 levels; level 0 for latencies between [0,100]ms;
level 1 for latencies between [100,200]ms; and level 2 for
latencies greater than 200ms. Using the 3rd levels, node A’s
level vector corresponding to its landmarks ordering is “0 1 2”.

Thus, after combining the relative with the absolute distances,
node A’s bin is “L2L3L1 : 0 1 2”.

The above binning scheme thus does a reasonable job of
placing nearby nodes into the same bin, (e.g., node C and D).
In other words, node C and node D represent a set of
approximate physical neighbors. Binning is simple and requires
very little from measurement and infrastructure. It is also very
scalable because nodes can independently discover their bins
without communicating with other nodes.

Figure 2. Distributed binning [12]

III. DISCORVERY OF PHYSICAL NEIGHBORS
The apparent problem with a basic design such as FLoD is

that neighbor formations are purely based on their logical
relationship but without knowledge of the physical networks.
The transmission thus may incur unacceptable delays for the
users. We assume that it would be more efficient if the data is
received from not just the virtual neighbors, but also nearby
physical neighbors. Furthermore, for users just walking around,

9781-4244-3941-6/09/$25.00 ©2009 IEEE

often only a glimpse of the surroundings (and not details) is
needed. The priority in selecting neighbors thus is speed over
completeness. As finding the absolute nearest neighbors is
unnecessary (especially if the process is slow), we thus adopt a
metric to discover physical neighbors only approximately.

A. System Model
Our goal is to find close physical neighbors for content

exchange. We first outline the main system components and
their functions, composed of content servers and peers. Content
servers are the initial hosts of all content and respond to content
requests from peers. Content servers also perform landmark
tasks by allocating new peers to a physical group and adjust the
tree structure that maintains each group. Peers make requests to
both neighboring peers and/or the server. They may also accept
requests from other peers and serve them. To find neighbors
and exchange content, each peer maintains its AOI neighbors
via a P2P overlay. To manage its membership within the tree
structure of a group, each peer maintains a grandfather, father
and child node table (explained later).

Figure 3 shows the overview of our system model. The
upper part is a diagram of the virtual world in FLoD, which
shows the partition of the scenes, the position of objects, and
the peers in the VE. The lower part is the grouping with DPN.
All peers are separated into one of the several groups with short
latencies among members. The arrows show mappings of the
same peer from the VE to the real world.

Figure 3. System overview

B. DPN Algorithm
1) Group creation

In this section, we introduce the process of group creation.
First, the locations of landmarks must be determined. How
many and how distributed are two important issues. Several
methods to pick suitable landmarks exist [11]. Most assume
that there are m servers, and n servers are picked among m
servers to become landmarks (m ≥ n). To simplify the process,
we set the content servers as landmarks directly and assume

that they are well-distributed. All peers then divide into n!
groups at most for n content servers. Each user will obtain RTT
with all landmarks by pinging. After collecting and sorting the
RTT, the servers will assign each user to a group by binning.

Figure 4. The configuration of grouping

As shown in Figure 4, if a new peer joins, and servers L1,
L2, and L3 are landmarks, the RTT results can be separated to
six possible groups: A：L2L1L3, B：L1L2L3, C：L1L3L2, D：
L2L3L1, E：L3L2L1, and F：L3L1L2. The RTT between a new
peer R1 and all three landmarks are RTT(R1, L1)：70ms,
RTT(R1, L2)：210ms, and RTT(R1, L3)：127ms. The content
server then sorts the results and determines the relative distance
L1L3L2 for the new peer. Hence, the new peer will be assigned
to group C：L1L3L2. This way, we can partition all peers to
several groups automatically.

2) Group preservation
Once a group is successfully created, we need to maintain

each group with procedures that include joining, leaving and
maintaining. After binning by the server, a new peer performs
the following join procedure (Figure 5).

• According to the new peer’s relative distance, the
content server sends the new peer to its peer group by
notifying the new peer of an existing node. (Step 1).

• The peer sends the connection request to this existing
node for connecting into an AVL-tree. (Step 2).

• The new peer creates the grandfather, father, and child
nodes table, and exchange information with these
nodes to update the table, while learning other potential
father nodes from the grandfather (Step 3).

Figure 5. The join procedure

Figure 6. The leave procedure

Figure 7. The maintenance procedure A

Figure 8. The maintenance procedure B

Figure 9. The maintenance procedure C

For proper leaving (Figure 6), such as logout, a leaving peer
notifies the nodes in its table, then disconnects from its group.

• The leaving peer notifies the nodes in the table (Step 1).
• The notified nodes modify their tables (Step 2).
• The leaving peer leaves normally (Step 3).
• Content server adjusts the AVL-tree structure.

Lastly, we describe the basic procedure for maintenance. In
each group, every peer pings its direct father node periodically
within a period t. When the node is alive, the tree structure is
correct. If the direct father does not reply, we trigger one of the
three maintenance procedures listed below. Afterwards, the
cleanup procedure is used.

a) Invalid direct father: (Figure 7)
• The peer pings its direct father C2 periodically.
• If the father does not respond, the peer looks for the

other father C3 in the table and requests connection.
• After receiving the reply, the peer connects to C3.

b) Invalid all fathers: (Figure 8)
• If the checking procedure a) fails, where all other

father nodes (e.g., C3) also do not respond.
• The peer requests connection with the grandfather C1.
• After receiving reply, the peer connects to C1.

c) Invalid father nodes and grandfather node: (Figure 9)
• If the procedures a) and b) both fail.
• The peer sends connection query to the content server.
• The server replies with an existing node to the peer.
• The peer requests connection to this existing node.
• After receiving the reply, the peer connects to this node.

d) Cleanup
• The peer, the content server, and its new direct father

exchange information to update the table.
• Content server adjusts the AVL-tree structure.

C. Neighbor selection
When a user walks in the scene, the peer can discover AOI

neighbors from the P2P overlay. When selecting neighbors to
retrieve desirable content, both logical AOI neighbors and
physical DPN neighbors can be considered. The concept of
nearby neighbor thus is enhanced by considering both aspects.
Below we show how this neighbor selection is done.

1) Selection flow
Figure 10 shows the schematic and the pseudo-code for

selecting neighbors to perform content request. We define an
N-tuple <G1, G2, G3, …, Gn> as each peer group in the real
world; the scene S = < S1, S2, S3, S4, S5, S6>; the object O =
<O11, O12, …, O21>; and the user node U = <U1, U2, Unew> in
the virtual world, where Unew is a new peer. Finally, Tk is the
current logical time and Tk-1 is the previous logical time (in the
form of a game tick or time-step). We assume that a globally
consistent logical time exists for nodes regardless inside or
outside the AOI.

Pseudo code:
Unew, U1: G1 ; //Unew and U1 are in the same group G1
U2: G2 ; //U2 is in the other group G2

while Unew joins a scene S (e.g., S1)
 if U1 in scene S and owns objects (e.g., O11,O12, O13) in time Tk
 request data transfer from U1
else if U1 owns the object O in previous time Tk-1
 request data transfer from U1
else if U2 in scene S owns the object O in current time Tk
 request data transfer from U2
else
 request data transfer from content server

Figure 10. Flow of neighbor selection

2) Data streaming
In order to receive the content as soon as possible, we

classify the streaming priority as shown in Table I. Due to
latencies, physical neighbors are more important than logical
neighbors. Peers in the same group thus indicate shorter latency
and must be chosen with the higher priority.

TABLE I. THE STREAMING PRIORITY

In Figure 11, a peer will request data with priorities ranging
from 1 to 5 (except 4 for the server), and G1, G2, and G3
specify the physical groupings for peers. We assume that even
if a neighbor is far logically, the neighbor may still own some
desired content and thus can be a potential source.

Figure 11. Priority of data streaming

IV. EVALUTION
As it is difficult to perform real experiments with many

peers, we verify DPN via the same discrete-time simulator used
by FLoD [7]. One decision to make is how many physical
groups should be created. Too many or too few will obviously
affect performance. As the size depends on the effectiveness of
landmarks, the decision is also a landmark selection problem.
The efficiency of landmark-based binning [12] depends on:

• The type and size of the topology the landmarks reside.

• The connection size among nodes.

• The number of selected landmarks.

Hsieh et al. [11] have simulated the above conditions in a
previous work and report that when the number of landmarks
increases from 5 to 6, the RTT is reduced most significantly at
38%. The decrease in RTT then would not improve with more
landmarks. Thus, we choose to simulate only three landmarks.

A. Simulation environment
The FLoD simulator runs on top the P2P-VE overlay VON

[8]. To set up a VE, a number of objects are randomly placed
on a 2D map partitioned into square cells. For simplicity, we
assume that each object has only one set of data pieces. A
number of nodes are put randomly in the virtual environment,
and stay at their joining locations until the system’s average fill
ratio exceeds 99%. The fill ratio [7] is defined by the ratio of
data volumes between the client’s obtained data and visible
data. This is to give each node an initial set of data to share.
The nodes then move with constant speeds, and request scene
descriptions or data pieces as needed. The simulator runs at
time-steps of 100ms each. In order to simulate a home ADSL
environment, the bandwidth limits are set as 1 Mbps download
and 256 Kbps upload for typical broadband clients and a 10
Mbps symmetric connection for the server. Each object is set to
15 KB, where the base piece is 3 KB and 10 refinement pieces
are 1.2 KB each. Scene descriptions are around 300 to 500
bytes each.

The latencies among the nodes are randomly assigned
between 1 to 15 time-steps (i.e., 100ms to 1500ms). Each
simulation proceeds for 3000 steps, which is equivalent to 300
seconds assuming 100ms per step. As we are interested in the
steady-state behavior, we collect statistics only for the last 2000
steps in each simulation. Finally, the max number of groups is
3! = 6 due to the use of 3 landmarks. Table II shows the more
detailed parameters.

TABLE II. SIMULATION PARAMENTS

B. Analysis
1) Base latency

We define the time between the initial query and the time
the first piece becomes available at a client as base latency [7].
It serves as an indicator of how soon a user can start to navigate
in a new scene. In Figure 12, we can clearly see that if the
number of nodes is few, the latencies are larger for both nodes
with and without DPN. As the number of nodes increases, the
latencies will decrease and approach a constant number. We
see that base latency without DPN is always higher. Note that
for comparison, we also add an optimal line where the latencies
among all nodes are always constant at 100ms (i.e., one time-
step), which shows the optimal streaming performance.

Figure 12. Base Latency

2) Server request ratio
Server’s loading is another important metric that can be

defined by the ratio between the content retrieved from the
server and all the requested content. It also indirectly measures
the system’s scalability (i.e., whether the server will overload
as user size increases). As the number of peer increases, the
system will likely operate better if the ratio is kept low. As
shown in Figure 13, the server request ratio for objects is
higher when nodes are few. However, as more nodes join, the
server request ratio reduces more. So if the number of the
nodes is large enough, the loading on server is light no matter
whether DPN is applied. In other words, the application of
DPN will not burden the system too much. The simulation
results show that scalability of the system is still maintained
well with DPN. Note again that with a constantly low latency,
optimal performance can reach a server request ratio of 1%.

Figure 13. Server Request Ratio - Object

3) Transmission size
In Figure 14, we can see the bandwidth usage of nodes with

DPN is higher than those without using DPN. The transmission
size grows faster when using DPN, which indicates that the
bandwidth utilization of peers with DPN is better than those not
using DPN, under the same bandwidth constrain.

Figure 14. Avg. Transmission Size Per Node

V. CONCLUSION
A method to approximate physical neighbor discovery for

P2P-VEs is proposed in this paper. Peers with short latencies
are grouped by binning first, and then are maintained via a tree
structure. We show that requesting content from physically
close neighbors can much reduce the request latency while the
system remains scalable (e.g., latency can improve by as much
as 45%). The preservation of groups with a tree-structure is
non-trivial if the number of peers is large, especially when
many peers leave the system. As the dynamic joining and
leaving of peers (i.e., churn) has not been considered, we hope
to address these issues as future work.

REFERENCES
[1] S. Singhal and M. Zyda, Neworked Virtual Environments: Design and

Implementation, New York: ACM Press, 1999.
[2] http://vast.sourceforge.net/relatedwork.php
[3] S. Y. Hu, S. C. Chang, J. R. Jiang, "Voronoi State Management for Peer-

to-Peer Massively Multiplayer Online Games," in Proc. NIME, 2008.
[4] S. Y. Hu, J. R. Jiang, and B. Y. Chen, "Peer-to-Peer 3D Streaming,"

IEEE Internet Computing, to appear.
[5] E. Teler and D. Lischinski, “Streaming of complex 3d scenes for remote

walkthroughs,” CGF (EG 2001), vol. 20, no. 3, 2001.
[6] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven

meshbased streaming,” in Proc. INFOCOM, 2007, pp. 1415–1423.
[7] S. Y. Hu et al., "FLoD: A Framework for Peer-to-Peer 3D Streaming," in

Proc. INFOCOM, Apr. 2008.
[8] S. Y. Hu, J. F. Chen, and T. H. Chen, “Von: A scalable peer-to-peer

network for virtual environments,” IEEE Network, vol. 20, no. 4, 2006.
[9] J. Chim et al., “Cyberwalk: A web based distributed virtual walkthrough

environment,” in IEEE TMM, vol. 5, no. 4, pp. 503–515, 2003.
[10] H. Miura and M. Yamamoto, "Content Routing with Network Support

Using Passive Measurement in Content Distribution Networks", in Proc.
CCNC, October 2002.

[11] M. Y. Hsieh, H. C. Yang, and L. M. Tseng, “Finding Nearest Neighbors
in Replication-Aware CDN-P2P Architecture”, Journal of Internet
Technology, Vol.6, No.2, 2005

[12] S. Ratnasamy et al., "Topologically-aware overlay construction and
server selection", in Proc. INFOCOM, 2002, pp. 1190- 1199.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

