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ABSTRACT
In multi-user networked virtual environments such as Sec-
ond Life, 3D streaming techniques have been used to pro-
gressively download and render 3D objects and terrain, so
that a full download or prior installation is not necessary. As
existing client-server architectures may not scale easily, 3D
streaming based on peer-to-peer (P2P) delivery is recently
proposed to allow users to acquire 3D content from other
users instead of the server. However, discovering the peers
who possess relevant data and have enough bandwidth to
answer data requests is non-trivial. A naive query-response
approach thus may be inefficient and could incur unnec-
essary latency and message overhead. In this paper, we
propose a peer selection strategy for P2P-based 3D stream-
ing, where peers exchange information on content availabil-
ity incrementally with neighbors. Requestors can thus dis-
cover suppliers quickly and avoid time-consuming queries.
A multi-level area of interest (AOI) request is also adopted
to avoid request contention due to concentrated requests.
Simulation results show that our strategies achieve better
system scalability and streaming performance than a naive
query-response approach.

Categories and Subject Descriptors
I.3.2 [Computer Graphics]: Graphics Systems–Distributed
/ network graphics
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1. INTRODUCTION
In recent years, networked virtual environments (VEs)

[19] have become more and more popular. Commercial VEs
such as Massively Multiplayer Online Games (MMOGs) of-
ten contain large 3D content to present realistic, immersive
environments for user interactions. Most MMOGs today
need to be fully installed beforehand with CDs or DVDs for
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easier content access. However, as content gets larger and
more dynamic, it would become increasingly inconvenient
for new users to try, or for existing users to update the con-
tent. A better way thus is to acquire only the content of
interest progressively via 3D streaming techniques [20, 6, 3].

3D streaming refers to the continuous and real-time de-
livery of 3D content such as meshes, textures, animations
and scene graphs over networks to allow user interactions
without a full download [8]. A client renders the content
according to certain data descriptions while downloading
other data pieces concurrently. Similar to audio or video
media streaming, the content needs to be fragmented into
pieces before transmission. However, a major difference ex-
ists between 3D and media streaming: data is fragmented
into sequentially ordered pieces and transmitted linearly in
media streaming, whereas 3D content’s transmission order is
not fixed and requires individual visibility calculation based
on the user’s viewpoint and behavior [20, 13].

Existing 3D streaming schemes are based on the client-
server architectures – all content is stored at a central server,
and transmitted to clients upon requests [12]. However, as
more clients join with more requests, the server becomes a
bottleneck when the data requirement exceeds its capacity.
To address this, peer-to-peer (P2P) delivery has been pro-
posed to achieve better scalability [6]. As each peer has some
data in its local cache, other clients could request from their
peers first when in need of similar content. The system’s
serving capacity may thus improve dramatically. However,
with a P2P approach, the issue of peer selection naturally
arises. The purpose of peer selection is to choose suitable
candidates so that content retrieval can be done quickly and
efficiently. However, peer selection for P2P 3D streaming
differs from file-sharing or media streaming due to data lo-
cality – peers who are nearby to each other in the virtual
world see similar views and possess similar content. Suitable
peers thus may be discovered with some predictability, but
they also change constantly due to user movements. How
to discover nearby neighbors and their data availability effi-
ciently and continuously thus is the main challenge.

In this paper, we propose some new peer selection strate-
gies for P2P 3D streaming. Peers periodically exchange in-
cremental content availability with neighbors to allow re-
questors to learn of providers quickly, saving both message
overhead and time. We also adopt a multi-level AOI request
to avoid request contentions. In the rest of this paper: Sec-
tion 2 provides background and related work; we describe
our proposed methods in Section 3, and simulation evalua-
tions in Section 4; conclusion is given in Section 5.



2. RELATED WORK

2.1 Peer-to-Peer VE
The earliest VEs connect users directly to each other,

which only allows for limited users. The scalability is later
improved by adopting the client-server architecture, where a
central server keeps all data to limit the clients’ bandwidth
usage. However, the CPU and bandwidth resources of the
server are still limited, which still impose bottlenecks for
the system. As a result, P2P networks have been proposed
to further improve scalability. The key idea behind a P2P-
based VE (P2P-VE) is that, as users only need to interact
within a limited area of interest (AOI) based on their current
viewpoints, they only need to connect with the other users
within the AOI. Due to user movements, the users within
the AOI (called AOI neighbors) may change rapidly. How
to discover the AOI neighbors efficiently thus is the central
issue. Solipsis [10], SimMud [11], VON [7], and COVER [14]
all try to provide neighbor discovery with the help of exist-
ing AOI neighbors or some superpeers, which could notify
about new AOI neighbors without relying on any servers.

2.2 3D streaming
The goal of 3D streaming is to deliver 3D content in real-

time, so that immediate interactions with the virtual world
is possible. Although several factors (e.g., the rendering
ability and bandwidth utilization) all affect the streaming
quality, the most important limitation has been the band-
width. Model simplifications and progressive transmissions
have thus been used to deal with the limited bandwidth [20].
Even though content streaming requires additional band-
width, it becomes less of a problem with better broadband
networks. Prefetching techniques [4] additionally could re-
duce the potential delay users experience. In fact, VEs based
on 3D streaming have already appeared (e.g., Second Life
[15] and There.com), where terabytes of content are naviga-
ble via progressive transmissions. In the long run, install-
then-play may no longer be practical or feasible, when the
content becomes truly massive and dynamic (e.g., a virtual
world with the scale of the globe1), or when VEs become as
numerous as the websites today.

Current 3D streaming scheme may be classified into four
types: object streaming, scene streaming, visualization stream-
ing and image-based streaming [6]. In this paper we focus on
scene streaming, which is an extension of object streaming
where many objects constitute a scene. As the user’s field of
view (i.e., AOI) may not cover the entire VE, downloading
the entire scene is not necessary. Hesina and Schmalstieg
[18, 5] proposed that user can use a circular AOI, and keep
the consistency of only the objects within AOI. Addition-
ally, if users just rotate views but do not move, the objects
within the AOI need not be re-acquired. Scene streaming
may roughly be divided into two stages: object determina-
tion and object transmission [17]. The first stage determines
which objects are visible given a user’s view. The second
stage decides the transmission order of objects based on vis-
ibility or the importance of objects. For example, when some
objects are obscured by other objects, the parts which are
visible may be transmitted first. Similar to other types of
streaming, caching and prefetching are also important con-
siderations [4].

1https://www.technologyreview.com/Infotech/18911/

Figure 1: Design of FLoD.

Figure 2: Example of request contention.

2.3 Peer selection in P2P 3D streaming
The purpose of peer selection is to choose the appropri-

ate data providers so that good download performance is
achieved. Hu et al. [8] propose a framework for 3D stream-
ing on P2P networks called FLoD (see Figure 1, where star
is a given user, dots are the other users. Objects are the
various shapes). FLoD assumes that each 3D object can be
fragmented into a base piece and many refinement pieces,
and divides the virtual world into several cells, where each
cell holds an individual scene description that describes the
objects within the cell. When a peer’s AOI overlaps with a
new cell, it first tries to acquire the scene description, and
then obtains the appropriate object pieces based on peer se-
lection. FLoD implements a naive query-response method
to discover content sources (i.e., which AOI neighbors have
the desired pieces). To download data, peers first query their
AOI neighbors, which are learned via a P2P-VE overlay such
as VON [8]. Neighbors who possess the content would then
respond positively, from which the requestors can then ran-
domly choose a peer to issue requests. However, this ap-
proach has the following limits: 1) to prevent flooding, only
limited query messages are sent at a time, which may pro-
duce few sources; 2) the overall download time is increased
as queries are needed before requests; 3) random selection
can cause a request contention.

Generally speaking, random peer selection achieves cer-
tain local load balancing as all AOI neighbors have equal
chances to serve requests. However, from a global view, sev-
eral requests may concentrate at an area and cause request
contention. In Figure 2, if peer E is covered by the AOI of
some other peers (A, B, C, and D). When these neighbors
try to request data from within their AOI, peer E would get
more requests on average due to the multiple AOI coverage.
Therefore, when all peers are requesting, data providers near
E may become overloaded. Moreover, if peer E itself is also
a requester, it will get the worse performance because all of
its potential providers could be serving other requestors.



Cavagna et al. [2, 16] have proposed another P2P 3D
streaming scheme for urban scenes stored in a hierarchical
and progressive tree structure called Level of Detail Descrip-
tion Tree, or LODDT. In this tree, each node represents a
level of detail (LOD) for a certain region. The root node rep-
resents the roughest detail and also the whole environment.
As the level increases, the details of the geometric data be-
come more delicate and refined. Each node also has an aura
representing a viewable area (i.e., similar to an AOI), of
which if a peer enters, the appropriate LOD would be ac-
quired by the peer. To facilitate peer selection, each peer
informs its Time to Serve (TTS) to neighbors periodically.
When peers enter an aura but do not possess the descrip-
tion data, they estimate what their neighbors might hold
based on the neighbors’ positions. With a list of potential
candidates, a peer chooses the one with the least TTS to
request. However, an obvious drawback is that, although
requestors could select candidates inside the aura based on
position info, some neighbors may be new and yet have any
data to serve. Requests sent to these neighbors would be
invalid and prolong the overall latency. Request contention
may also occur as peers with the least TTS may receive more
requests than others.

3. PROPOSED STRATEGIES
We observe that peer selection can be divided into two

phases: source discovery and source selection. Source dis-
covery is to find out which nodes might possess the desired
data, and source selection is to choose a few nodes among po-
tential candidates to request the actual data. Note that we
assume that there are existing methods to allow each node to
always connect with its AOI neighbors, and maintain them
(i.e., discover new ones as nodes move) via a P2P-VE over-
lay such as VON[7, 8]. Direct message exchange among AOI
neighbors is also possible. In this section, we describe our
peer selection strategies according to these two phases.

3.1 Source discovery
We propose an active exchange method to discover data

sources. Peers would periodically notify AOI neighbors about
their own data availability incrementally. Besides an index
number of message type, a notify message only contains the
object ID (Obj ID) and the maximum continuous piece ID
(Max PID) (Figure 3), which specifies up to which pieces
have already been received (e.g., if pieces with IDs 1, 2, 4,
5 are received, 2 is the maximum continues piece ID). As
peers can request data from multiple neighbors, the pieces
received may be out of order. Here we assume that object
re-constructions are strictly linear, so only the piece ID from
the base piece (i.e., the first piece) to the maximum contin-
uous piece are usable. Peers distribute the full availability
information only to new AOI neighbors. For existing neigh-
bors, only incremental updates are sent as new data pieces
arrive. This way, peers spend less overhead to learn of the
neighbors who might hold the desired data. Requestor can
also easily create the list of request candidates based on the
exchanged information, reducing the source discovery time.

Additionally, as non-AOI neighbors might also possess rel-
evant data, a peer would keep its neighbors’ data availability
information even after they move out of AOI, and would still
exchange the neighbors’ positions until they are beyond a
specified distance. In Figure 4 (solid circles are the original
AOI and dotted circles are the extended candidate buffer),

Figure 3: Format for an availability update.

we assume that peer B already has the scene description
and the object data. When both A and B move into each
other’s AOI, they would learn of each other’s data availabil-
ity. After B moves out of A’s AOI, peer A would still keep
B’s information. So when A needs to request new objects,
it can add B into the candidate list as B is still within the
extended buffer. The potential data sources can thus be
increased with few overheads. These peers additionally fa-
cilitate content dissemination, as with more providers, the
load will be shared by more peers.

Figure 4: Extended candidate buffer.

3.2 Source selection
Once we have a list of candidate sources, we need to select

the suitable ones for efficient retrieval. Although random se-
lection is quite simple and achieves local load balancing, it
may cause request contention when multiple nearby peers
are requesting from the same data. In order to reduce con-
tention, we propose a multi-level AOI request for source se-
lection.

Figure 5: Original vs. multi-level AOI request: (L)
Original AOI (R) Multi-level AOI, the shaded area
has the highest request priority.

The idea for multi-level AOI is to divide the original AOI
into several concentric levels, where each level closer to the
center (in terms of virtual coordinates) has a higher request
priority than those further out (Figure 5). Peers within the
higher levels are requested first. If there is more than one
candidate at the same level, the requestor then chooses ran-
domly. The central concept is to concentrate data requests
closer to the requestor itself, so that contention is avoided



among peers who desire the same data. For instance, if all
five requestors in Figure 6 request from the higher prior-
ity area first, their request areas then would not overlap.
Providers thus serve in a more balanced manner to reduce
contention and enhance performance. However, multi-level
AOI request may extend request times slightly. As peers
now request from fewer providers for the same amount of
data, more time may be needed to fulfill each requests.

Figure 6: Example of multi-level AOI request.

4. SIMULATION EVALUATION

4.1 Simulation setup
We use simulations to evaluate our proposed selection

strategies. Our simulation is based on FLoD [8], as FLoD
uses a simpler 2D plane to organize the objects, and its
source code is publicly available [1]. Existing P2P stream-
ing approaches focus mainly on sequential data, and do not
fully support the requirements of interactive 3D applica-
tions. As such, they are not directly comparable with our
approach. Our main goal thus is to compare the proposed
selection strategies with those used by the original FLoD.
In order to simplify the naming for different strategies, we
use ”QR” and ”EE” to represent the source discovery strate-
gies ”query-response” and ”exchanged & extended candidate
buffer”; ”Rand” and ”ML” for the source selection strategies
”random selection” and ”multi-level request”. So for exam-
ple, ”QR-Rand” is the naive query-response and random se-
lection used by the original FLoD.

To initialize the simulation, 3D objects are randomly de-
ployed in the virtual world. As in FLoD, we assume that
each 3D object can be fragmented into a base piece and sev-
eral refinement pieces [8], where the base piece gives a rough
outline of the object, and refinements restore the object to
its original shape. We adopt similar simulation parameters
as used in FLoD, which is based on the data from a game
prototype. Each object is 15KB (3KB is the base piece, and
refinements are 1.2KB each). Since the number of objects
in each cell is not necessarily equal, the sizes for scene de-
scriptions are not fixed, but are roughly about 1.7KB each.

In the simulation, a number of nodes are first created to
represent virtual world users. Each node adopts random
way-point movements at a fixed speed. The initial node
positions are also randomly placed. When the simulation
starts, all nodes stay at the starting position until the aver-
age possessed data of each peer reaches 80% of those within
their view. This ensures that when the nodes start mov-
ing, they already have partial data to serve other nodes.
Moreover, in order to simulate a more realistic environment,
we limit the node bandwidth to be 1 Mbps download and

Table 1: Simulation parameters

World dimension (units) 1000x1000

Cell size (units) 100x100

AOI-radius (units) 75

Time-steps 3000

Number of nodes 50 - 500 (in 50 increment)

Number of objects 500

Node speed (units / step) 1

Client cache size (KB) 20 (scene descriptions)

700 (object pieces)

256 Kbps upload. The central server’s bandwidth is limited
at 10 Mbps for both download and upload. The simula-
tion proceeds for 3000 time-steps where each step is 100 ms
each. For simplicity, constant latency is assumed between
all nodes (i.e., each message sent is received by a neighbor in
the next time-step, unless delayed due to bandwidth limits).
For the query-response strategy, 10 query messages are sent
to neighbors every 5 time-steps. For our proposed scheme,
the extended candidate buffer radius is 150 (inclusive of the
original AOI), and the number of AOI levels is 4. We simu-
late different scenarios with an increasing number of nodes
within the VE, to see how the system may scale. Specific
parameters for our simulations are shown in Table 1.

4.2 Simulation results
We collect the statistics from the last 1000 steps for our

analysis, as the system needs some time to achieve the steady
state which we are interested in. We will discuss the simula-
tion results in respect to the streaming quality and system
scalability below. Note that node size in the following figures
indicates the total number of peers in the system.

4.2.1 Streaming quality
We first show our results on streaming quality, which is

quantified by the following metrics used in FLoD [8]: hit
ratio, base latency, and fill ratio:

* Hit ratio: Ratio between successful requests and the
total number of requests sent.

* Base latency: Duration between the initial request
and the time the base piece is acquired.

* Fill ratio: Percentage of the possessed data among
the required data for a view.

Figure 7 shows the hit ratio, where we can see that with
random peer selection, hit ratio drops when the number of
total users (hence the user density in the fixed-size area)
increases. This is because random selection causes resource
contention and increases the possibility to request from peers
without serving capacities. Besides, we also see that using
”exchanged & extended candidate buffer”would decrease the
hit ratio. It is because peers only notify content availability
to their neighbors. However, peers may remove old content
when the cache is full, yet, as such removal is never commu-
nicated to neighbors to conserve bandwidth, peers may end
up having a higher probability to request data from unavail-
able providers.



Figure 7: Hit ratio.

Figure 8: Base latency.

Figure 8 shows the latency to acquire the base piece, which
indicates how fast the outline of an object can be shown once
it becomes visible. We can obviously see that the original
strategies used by FLoD need longer time to acquire the
base pieces, in order to wait for the response from the data
providers. With our discovery strategies, peers may reduce
the base latency by almost half (i.e., it takes only a round-
trip of 200ms to see the base piece). Multi-level requests also
help to reduce latency, because it decreases the probability
for request contention to occur, and enhances the hit ratio
of peers, needless re-requests thus are avoided.

From Figure 7 and 8 we already see that our methods
achieve better performance when the number of peers in-
creases. Figure 9 shows the overall fill ratio, which further
validates these results, where the fill ratios are generally
higher than the original FLoD strategies. Moreover, Figure
10 shows the time series of the overall fill ratio. When the
peers start moving, the overall fill ratio first drops then re-
stores to a steady state. We can see that the naive strategies
used by FLoD requires a longer time to achieve the steady
state, which shows that the original peer selection is slower
in disseminating data. A possible reason is that in the orig-
inal selection, peers who receive queries do not necessarily
possess the data. So there are fewer actual providers than
the number of query targets. The requestors are thus unable
to acquire the desired data effectively.

4.2.2 System scalability
Scalability describes whether a system is flexible enough

Figure 9: Overall fill ratio.

Figure 10: Overall fill ratio time series.

to allow users to join simultaneously. Note that although
we mainly discuss about the number of total users in the
system (or system scalbility), and not the scalability of users
within the AOI (or AOI scalability [9]), the two are directly
related in our simulations as the world size is fixed (i.e.,
the increase in total number of users directly relates to an
increase in user density). We can judge whether a system
is scalable by considering its resource consumption. In a
P2P system, the main limiting resource is the bandwidth
used by both the server and the clients [7]. The system
can scale as long as bandwidth consumptions stay below the
capacity limits of all nodes. Figure 11 shows the server’s
bandwidth consumption. We can clearly see that the peer
selection in the original FLoD consumes more bandwidth
than our proposed strategies due to longer latency and the
lack of data sources. When peers need more time to inquire
for data, there would be fewer nodes with available data to
serve. When the limited data sources cannot serve, the only
way for peers to acquire data is to request from the server.
Additionally, the original FLoD limits the number of query
messages at a time, in order to avoid request congestion, but
it also makes the peers to be aware of fewer candidates. The
peers who possess the data but do not receive queries thus
will be unable to serve. As data is disseminated slowly, the
central server will thus get more requests and consume more
bandwidth.

Figure 12 shows the average source discovery bandwidth
of peers, which is the main overhead of using a P2P ap-



Figure 11: Server bandwidth consumption.

Figure 12: Bandwidth used for source discovery.

proach to download content as compared with client-server.
It shows that our scheme also uses less bandwidth than in
the original FLoD. As peers notify neighbors the piece in-
formation incrementally, only a small amount of bandwidth
is required. Peers thus have more bandwidth to serve the
neighbors, which in turn helps to enhance overall system
performance.

5. CONCLUSION
In this paper, we propose some new peer selection strate-

gies for P2P-based 3D streaming VE applications that im-
prove both the streaming quality and the system scalability.
By exchanging data availability information incrementally,
peers are aware of potential data providers immediately, thus
reducing the time to request, and bandwidth for inquiry. We
also adopt a multi-level request mechanism for peers to con-
centrate data requests closer to themselves, so that request
contention is reduced. As shown by simulations, our pro-
posed strategies indeed improve both system scalability and
performance.

The ideas for P2P 3D streaming is also usable for other
spatially interactive content streaming. For example, the
real-time streaming for 3D virtual globes is a potential ap-
plication beyond the streaming of game content. For future
work, we plan to consider balancing the requests for all peers
more equally, and utilizing pre-fetching techniques to further
reduce the time to retrieve new 3D objects. Consideration
of the physical topology is also an issue, as peers close in

the virtual space may be far apart on the physical networks.
Applicability of our proposed strategies to other P2P 3D
streaming schemes is another avenue for investigations.
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