
Scalable Reputation Management for P2P MMOGs
Guan-Yu Huang1, Shun-Yun Hu2, Jehn-Ruey Jiang3

Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

1aby@acnlab.csie.ncu.edu.tw 2syhu@yahoo.com 3jrjiang@csie.ncu.edu.tw

Abstract—Networked virtual environments (VEs) such as Mas-
sively Multiplayer Online Games (MMOGs) have become very
popular in recent years. However, existing client-server archi-
tectures suffer from resource constrains when the number of
concurrent users increases. Research on peer-to-peer virtual envi-
ronments (P2P-VEs) thus tries to create more scalable and afford-
able VEs via the resource sharing of mutually cooperating clients.
However, P2P approaches face the problem of client misbehavior
where clients may not properly process the game rules. Without
the monitoring and control from servers, the misbehavior could
negatively affect a game’s normal operations. In this paper, we
present REPS, a distributed reputation management system for
P2P-based MMOGs that allows trustworthy clients be identified.
Based on the mutual rating and reputation query among users,
REPS provides a scalable and reliable reputation mechanism
that helps users to estimate the trustworthiness of others, so that
subsequent grouping, trading, or superpeer selection decisions
are made more reliably.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs) such as
World of Warcraft [1] and Second Life [2], where over hun-
dreds of thousands of players assume virtual identities and
engage in various interactions, have become very popular in
recent years. These virtual worlds are very attractive as they
provide immersive 3D environments that people can constantly
explore together. As of 2008, there are more than 12 millions
registered Second Life accounts and over 10 millions paying
subscribers in World of Warcraft. As user population grows,
the traditional client-server architecture will suffer from the
server’s limited bandwidth and processing power. To solve this
problem, peer-to-peer virtual environments (P2P-VEs, e.g.,
SimMud [3], Colyseus [4], and VON [5]) have thus been
proposed.

In client-server architectures, the server receives and pro-
cesses all the user-generated events. This ensures that the
action of each participant is monitored, and game rules are
executed objectively as the designers have intended. Cheating
is also restricted as all important processing is done by
the servers. However, P2P-VEs do not have such fairness
guarantee because most server functions are now assumed
by some clients. A client may modify any information that
it possesses and may even assume new identities when it
has cheated for private benefits. Although, most players may
not go to great length to cheat, as modifying the game code
requires certain technical skills. But even if only a small
number of users are successful at cheating, gameplay can still
be disrupted seriously.

Fortunately, we observe that the nature of MMOGs is highly
social, and users often invest large amount of time and energy
to build their in-game persona to ensure their standings in
the virtual world. Users often are also bounded by guilds or
other social organizations, as opinions from other users affect
one’s reputation and social experiences even more than other
in-game activities. In other words, there exists strong social
forces in successful MMOGs where active users typically
value highly their status and reputations among peers. Such
reputation thus may be exploited to facilitate certain game
operations, such as the selection of trustworthy clients for im-
portant functions. We have seen similar mechanism in online
marketplaces such as eBay and Yahoo Auctions, where online
reputations based on mutual user ratings are used to estimate
the trustworthiness of a user. If such reputation mechanism
can be adopted in P2P MMOGs, it might help users to make
decisions on whether to interact with a particular peer, or to
select trustworthy clients for assigning more responsibilities.

In this paper we propose REPS, a reputation management
system for P2P MMOGs based on peer-rated reputations. Each
user has a reputation value based on other users’ subjective
opinions during their interactions. Reputation values are stored
at some trustworthy neighbors called trust nodes, so that they
may be accessed distributively without requiring a server. To
select the trust nodes, we use Neighbor Trust node Selection
(NTS) to choose trustworthy peers. NTS uses statistical regres-
sion method to choose trustworthy users, so that only users
matching the strictest reputation criteria are chosen.

The rest of this paper is organized as follows. Section II
provides background on reputation management and P2P-VEs.
Section III presents our problem formulation and challenges in
distributed reputation management. We describe the design of
REPS in Section IV, and discuss its characteristics in Section
V. Conclusions are given in Section VI.

II. BACKGROUND

A. Reputation management

Recently, many P2P-based reputation systems have been
proposed, often in the context of e-commerce (e.g., [6], [7],
[8], [9], PeerTrust [10], Beta [11]). The goal of these systems
is to compute the reliability of a peer and predict its future
behavior of a specific identifier based on past interactions with
the peer. The users are often buyers and sellers in an existing
distributed or semi-distributed e-commerce environment. The
reputation value represents a summary view for the user’s



behavior, and can be used as the reference to warn or con-
vince other users. By quickly identifying whether an user is
trustworthy, interactions with malicious users who would cheat
for private benefits can be avoided.

A peer’s reputation value in these systems is calculated by
collecting the local evaluations from other users. For example,
in [12] and [8], the sum of the rating scores from every
transaction is used to compute each user’s reputation value.
To make reputation values globally accessible and reliable,
PeerTrust [10] normalizes the values by specific weights
computed from each user’s global reputation.

Some recent approaches like [13], [14], [15] and [16] use
the Bayesian method that takes a binary input (i.e., positive
or negative) to predict the cheating probability of the next
transaction with a user from past experience. [17] provides
the QoS experience vectors to perform reputation evaluation
on many levels to determine more precise reputation values.

Besides evaluating other users, users will also need to
know someone’s reputation value for various tasks. To query
reputations in P2P environments, a decentralized method is
often used to aggregate reputation scores from various places
to compute the global reputation value. In a client-server
architecture, the server stores all the reputation data, and users
just need to query the server. However, in decentralized envi-
ronments, often a P2P storage such as Chord [18], CAN [19],
or P-Grid [20] is used to distributively store the reputation
data. For example, [17] uses Chord to find the successors of
each user A, where A stores all reputation records evaluated
by other users on its successors. When another user B needs
to know A’s reputation, it will hash A’s identifier to aggregate
the reputation evaluations from A’s successors. Similarly, [12]
uses the identifier hash to discover successors for storing the
reputation values with CAN or Chord.

Some other problems also exist in P2P reputation manage-
ment, for example: how to distinguish honest from dishonest
people, or to detect dishonest ones pretending to be honest
[21]? How to filter extreme (i.e. too positive or negative) or
fake reputation evaluations in order to ensure correctness? And
how to prove that a reputation management is reliable for a
given application? There are many works that discuss these
general problems for reputation management (e.g., [6], [22]
and [8]). We will discuss how REPS deal with these problems
in P2P MMOG scenarios.

B. P2P-VEs

In P2P-VEs, every user has a visibility range called area
of interest (or AOI, see Fig. 1). The AOI is often circular,
and other users within the AOI are called the AOI neighbors.
Users can exchange messages to comprehend the environment
around them, and see the dynamic updates from other AOI
neighbors. The key to scalable P2P-VEs is based on the fact
that users have limited view within their AOI and only need to
observe changes within the AOI. The scalability of the whole
environment thus can be extended if each user only exchanges
messages with its AOI neighbors, without going through the
server.

Fig. 1. Large circle is the AOI of the center user.

In some approaches (e.g., [3], [23], [24], [25]), the whole
world is divided into serval disjoint sub-regions in order to
manage information updates distributively. Some participants
with better capacities are chosen as superpeers to relay in-
formation (e.g., position updates and the event notifications)
for other users. Lo et al. [26] define a superpeer as a special
role that can provide services to non-superpeers and describe
several superpeer selection methods.

For the many P2P-VE schemes that adopt superpeers,
whether the selected clients are trustworthy is essential for
the system’s. One of the implications for REPS thus is a
reliable method to select trustworthy nodes that could assume
important superpeer functions.

III. PROBLEM FORMULATION AND CHALLENGES

Our goal is to build a scalable reputation management
system that supports P2P MMOGs by developing a distributed
method to rate, store, and query reputation values. The main
problem is how to store the reputation scores on reliable peers
and query them effectively. We first assume the following for
our scenario:

1. Every user has a fixed AOI radius because most current
MMOGs’ use a fixed visual range, where users see each others
only when they are within each other’s AOI. Between two
mutually visible users, certain game-specific interactions can
occur (e.g., talking, fighting, trading, etc.). The users within
AOI, or AOI neighbors, change periodically as users move
around in the virtual world.

2. We assume that there exists some P2P-VE overlays that
provide a list of AOI neighbors for each user (e.g., SimMud
[3], Colyseus [4], VON [5]). So any user may connect and
exchange messages directly with its AOI neighbors.

3. Two mutually visible users can rate each other with a
score of positive, neutral, or negative (+1, 0, -1) based on
their past interactions. A reputation record follows the form
of (rater, rated-user, evaluation), where rater is the user who
makes the rating, rated-user is the user evaluated by the rater
and evaluation records the actual rating.

4. A user can only give a single rating to another user.
However, the rating can be changed later at any time if the
original rater wishes to.

5. We assume that if a user’s reputation exceeds certain
threshold, the probability of cheating is low, as more effort
than others has been spent to build the reputation (Fig. 2).



Fig. 2. Relation between probability of cheating and reputation value.

To build a scalable reputation system for P2P MMOGs for
the above scenario, we outline some challenges below:
Reputation evaluation User experiences are the basis for the
reputation values in a reputation system. How to efficiently
and precisely represent user perceptions thus is an important
problem. Reputations are also meaningless if most users do not
provide ratings. In MMOGs, players often focus more on the
game itself than miscellaneous activity such as reputation eval-
uation, mechanisms to encourage user rating thus is needed.
To provide suitable evaluations, we need a simple and efficient
method that allows user evaluations be done conveniently, and
reputation values be aggregated efficiently.
Storage and query How to store and query reputations in a
fully distributed environment is the main challenge for a P2P
reputation system. To ensure that the system would scale, we
need to store the data with a distributed method while avoiding
any server or client overloads. To efficiently query reputation
data from other users, two problems need to be addressed:
how to find the users that store the reputation data, and how
to collect the data with minimal delays.
Reliability There are more transactions like trading, talking
and grouping [27] in MMOGs than in online auction sites,
where over 90% of users have only transacted once [28].
Therefore, ensuring that a reputation system provides reliable
and trustworthy information is very important. In P2P envi-
ronments, users may modify the reputation data they keep for
private benefits. This would cause misunderstandings among
users and unbalanced gameplay. Prevention, detection, and
recovery of cheating behavior thus are needed.

IV. DESIGN OF REPS

A. Local reputation evaluation

In REPS, users rate one another when they are within each
others’ AOI, because interactions can only occur with AOI
neighbors. For example, in Fig 3, users C and F could rate A
because they are within A’s AOI. The rating should also occur
with a probability related to the level of interactions. The more
exciting the interactions and the more unfamiliar the users
are to each other, the higher the probability for rating. The
interacting users will generate a rating right authorized by

Fig. 3. The rating condition in REPS

the rated user to the potential rater, so that it can give a rating
at some convenient time. The rating right is used to prevent
some raters to rate users that they have never interacted with.
The rating right contains the rated user’s name and IP address
and is recorded at the rater so that the rater can choose a time
that is convenient to give ratings. For example, if user C rates
user A with a score of 1, then a rating record of (C, A, 1) will
be stored at A’s trust nodes, who would update A’s reputation
based on A’s last reputation value. Each user can have only
one rating about another user, but can also change the rating
when impression for the other user has changed. This way
users may mutually monitor each other’s behaviors.

B. Reputation storage and query

In order to scalably store and query the reputation records,
a user identifies and chooses N trustworthy users as its trust
nodes from its current and recent AOI neighbors (called the
potential neighbors). Trust nodes are chosen from potential
neighbors according to Neighbor Trust node Selection (NTS)
that will be described next. Once reliable peers are found
through NTS, they are recorded in a trust list containing the
chosen trust nodes’ identifiers and IP addresses. The trust list
is stored at the user to allow easy inquiry by others. To give
a rating to user A, raters first query A’s trust list from A, and
then send their ratings (i.e., reputation records) directly to all
trust nodes to update A’s reputation value.

When a user B is within user A’s AOI, B can request for
A’s trust nodes in order to query for A’s reputation value. User
A would send its current trust list to B, where B randomly
chooses n (where 1 ≤ n ≤ N ) trust nodes from the list to
query. The chosen trust nodes will then respond the reputation
value of A to B. The reason for asking reputation values from
n trust nodes is to prevent any trust nodes from manipulating
the stored reputation values. A reputation value is recognized
only if it is returned by a majority of the trust nodes.

A user’s potential neighbors would expire after a certain
timeout, but may be renewed if the neighbors revisit a user’s
AOI. This has the effect that a trust node will also expire if
it has not been a user’s recent AOI neighbor. By limiting the
time a node may be a trust node, users with high reputation



TABLE I
EXAMPLE OF PROPORTIONALITY MISREPRESENTATION

User total score, TS(u) number of ratings, V(u) P(u)
A 30 100 0.3
B 9 10 0.9

can be saved from being always selected as trust nodes and
bombarded with requests.

C. Neighbor Trust node Selection (NTS)

In REPS, each user requires N trust nodes that are chosen
via Neighbor Trust node Selection (NTS). Many existing
reputation systems use peer rating to devise the reputation
(e.g. PeerTrust [10]), where an user i can give another user u a
score S(u, i) of either positive or negative, and the reputation
is simply the summation of all scores, or a total score (TS).
Other methods also exist in auction sites such as eBay or
Yahoo Auctions, where a ratio P (u) indicates the proportion
between the total score TS(u) and the total number of ratings
V (u). The higher the P (u), the more trustworthy a given user
u is.

TS(u) =
∑

S(u, i)

P(u) =
TS(u)
V (u)

But which is better? If A scores 30 out of 100 ratings, and
B scores 9 out of 10 ratings. According to TS(u), A is more
trustworthy as its total rating is higher than B’s. But the ratio
P (u) of B is higher than A’s, which indicates that B may
be more trustworthy. Yet since 100 people are willing to rate
A and only 10 persons have rated B, the significance of A’s
rating may be higher. Some proportionality misrepresentations
thus exist in existing approaches (Table I).

Ideally, we would like to combine the effects of both the
total score and the ratio of positive rating, as they are both
meaningful for a person’s reputation. However, we do not
know which is more important as it may differ across regions
or MMOGs, where the willingness to rate can vary. We thus
design Neighbor Trust node Selection(NTS) that combines
both TS(u) and P (u) in a flexible way. A simple way to
conceptualize NTS is in Fig. 4, where the x-axis represents
all possible ratio values and the y-axis represents all possible
total scores. There is also an area called trust region where a
user u can be selected to become a trust node if its reputation
point lies within the trust region (i.e. P (u) > Pbound and
TS(u) > TSbound, where Pbound is between 0 and 1 and
TSbound is between the most negative and the most positive
ratings). If we want to select N trust nodes, we can select N
points (i.e. clients) from the trust region. If more trust nodes
are needed, the area of the trust region is adjusted by changing
Pbound and TSbound. To adjust Pbound or TSbound, we define
the value m as the absolute value of the regression coefficient
that represents the slope of the regression line for all points
in the trust region, where P̄ is the average P (u) and T̄ S is
the average TS(u) of all users within the trust region:

Fig. 4. Trust plane in REPS

m =

∣∣∣∣∣∣
∑

(P (u)− P̄ )(TS(u)− T̄ S)∑
(P (u)− P̄ )2

∣∣∣∣∣∣
The regression coefficient shows the pattern of distribution

for all reputation points, and taking absolute values means
that NTS only cares about the direction of the distribution
but not the shape of the regression line. If m > 1, the trend
for points in the trust region is towards TS(u), its weight thus
should be increased. If m < 1, it means that the point positions
are tilting towards P (u) in the trust plane, and NTS should
increase the weight for P (u). The actual adjustments ∆Pbound

and ∆TSbound for Pbound and TSbound are adjustment ratios
(i.e., they are percentages of the change in the values of Pbound

and TSbound), and depend on the value of m, where ∆Pbound

/ ∆TSbound = m. NTS increases ∆Pbound and ∆TSbound

simultaneously with a fixed ratio m until the number of
the candidate points matches the system demand. Likewise,
∆Pbound and ∆TSbound could also decrease with the ratio m
when the required trust nodes are less.

When the number of AOI neighbors is not large enough,
trust nodes are chosen randomly until the number of users
exceeds a threshold δ, then NTS is used again. When NTS is
first used, we initialize m, Pbound and TSbound to be 1.0, 1.0
and n where n is the number of current online users and the
area of the trust region would be 0. We then reduce Pbound and
TSbound to extend the trust region by ∆Pbound / ∆TSbound

= 1 in order to find new trust nodes or remove old ones, as
the set of potential neighbors change with time.

V. DISCUSSIONS

A. Reputation evaluation

REPS uses direct rating as the evaluation method, where
users give a simple score (-1, 0, 1) to represent their impres-
sions for each reputation evaluation. It is thus very simple
to integrate one’s reputation value. A user’s trust nodes can
update reputation values directly and individually whenever
they get a new reputation record. The rating right control lets



users to recognize which users can rate them and ensures that
only users who have interacted can rate each other. REPS
thus provides a simple and effective method to represent and
compute the reputation value.

B. Storage and query

Users in REPS store their reputation data on their trust
nodes, this prevents a user from modifying its own reputations,
as other users store and query reputation values directly with
the trust nodes. A rated user provides only the trust list to a
rater, and is not responsible to maintain his or her reputation
value.

Querying reputation data can also be done efficiently as a
querying user only needs to obtain the trust list, then it can
ask some chosen trust nodes directly. As the number of users
increases in a system, the number of queries may also increase
for a given user. The overhead for each trust nodes can be
reduced by increasing the number of trust nodes N for each
user, so that more trust nodes may share the load of querying.

C. Reliability

The effect of malicious users on the system is reduced in
REPS due to the mutual monitoring among users. As everyone
can rate another user and update their scores when new situa-
tions occur, a cheating user will soon be rated very negatively
if some misbehavior is discovered. The cheater’s reputation
will reduce rapidly and its privileges or responsibilities could
be removed.

For the storage of reputation values, as they are stored on
multiple trust nodes, improper modifications by any single
trust node is masked from the correctly maintained records in
other trust nodes. Trust node misbehavior thus will impact the
system minimally and can be quickly detected. As reputations
are stored and accessed at trust nodes instead of the rated user,
users also cannot manipulate their own reputation values for
unfair benefits. On the other hand, it is in a user’s best interest
to provide a list of trustworthy trust nodes to any potential
rater, as it will surely wish that its reputation value is recorded
and accessed objectively.

VI. CONCLUSION

REPS provides reputation management to support P2P
MMOGs by allowing users to rate each other after some
interactions, and select trustworthy nodes based on these
ratings. Through the use of trust nodes, reputation records
can be stored and accessed distributively without relying on
a centralized server. Reputation values can thus be built and
used in a scalable way. We also present Neighbor Trust node
Selection (NTS) that chooses the trust nodes by combining two
intuitive factors (e.g., a user’s total score and positive rating
ratio) and adjusts each factor’s weights to adapt for different
scenarios. Dynamic adjustments of the trust region finds
the minimum area that satisfies a given number of required
trust nodes, effectively selecting trustworthy nodes using the
strictest criteria. We plan to evaluate REPS’s effectiveness via
simulations as our future work.

REFERENCES

[1] “World of warcraft,” http://www.worldofwarcraft.com/.
[2] “Second life,” http://secondlife.com/.
[3] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for

massively multiplayer games,” in Proc. INFOCOM, 2004, pp. 96–107.
[4] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed architec-

ture for online multiplayer games,” in Proc. NSDI, 2006, pp. 155–168.
[5] S. Y. Hu, J. F. Chen, and T. H. Chen, “Von: A scalable peer-to-peer

network for virtual environments,” IEEE Network, vol. 20, no. 4, pp.
22–31, 2006.

[6] Y. Atif, “Building trust in e-commerce,” IEEE Internet Computing,
vol. 6, pp. 18 – 24, 2002.

[7] A. Josang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision Support Systems, vol. 43,
no. 2, pp. 618–644, 2007.

[8] C. Dellarocas, “Analyzing the economic efficiency of ebay-like online
reputation reporting mechanisms,” in Proc. 3rd ACM conference on
Electronic Commerce, 2001, pp. 171 – 179.

[9] K. Aberer and Z. Despotovic, “Managing trust in a peer-to-peer infor-
mation system,” in In Proc. ACM CIKM, 2001, pp. 310 – 317.

[10] L. Xiong and L. Li, “Peertrust: Supporting reputation based trust for
peer-to-peer electronic communities,” IEEE TKDE, vol. 16, pp. 843–
857, 2004.

[11] R. Ismail and A. Josang, “The beta reputation system,” in Proc. 15th
Bled Conference on Electronic Commerce, 2002.

[12] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust al-
gorithm for reputation management in p2p networks,” in Proc. WWW,
2003.

[13] S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for p2p
and mobile ad-hoc networks,” in Proc. Second Workshop on Economics
of P2P Systems, June 2004.

[14] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt,
“Ratings in distributed systems: A bayesian approach,” 2001.

[15] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for
high integrity sensor networks,” in Proc. SASN ’04, Washington, D.C.,
USA, October 2004.

[16] R. Zhou and K. Hwang, “Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing,” IEEE Transaction on Par-
allel and Distributed Systems, vol. 18, no. 4, pp. 460–473, 2007.

[17] Y. Zhang and Y. Fang, “A fine-grained reputation system for reliable ser-
vice selection in peer-to-peer networks,” IEEE Transaction on Parallel
and Distributed Systems, vol. 18, no. 8, pp. 1134–1145, 2007.

[18] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. ACM SIGCOMM, 2001, pp. 149–160.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proc. ACM SIGCOMM,
August 2001.

[20] K. Aberer, “P-Grid: A self-organizing access structure for P2P informa-
tion systems,” LNCS (CoopIS 2001), vol. 2172, pp. 179–194, 2001.

[21] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard: Countering vulnerabil-
ities in reputation management for decentralized overlay networks,” in
Proc. 14th Intl World Wide Web Conf, 2005, pp. 422–431.

[22] Y. Yan, A. El-Atawy, and E. Al-Shaer, “Ranking-based optimal resource
allocation in peer-to-peer networks,” in Proc. INFOCOM, 2007, pp.
1100–1108.

[23] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito, “A distributed event
delivery method with load balancing for mmorpg,” in Proc. Netgames,
2005.

[24] H. Lee and C. Sun, “Load-balancing for peer-to-peer networked virtual
environment,” in Proc. Netgames, Oct. 2006.

[25] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi state management for
peer-to-peer massively multiplayer online games,” in Proc. NIME, 2008.

[26] V. Lo, D. Zhou, Y. Liu, C. GauthierDickey, and J. Li, “Scalable
supernode selection in peer-to-peer overlay networks,” in Proc. of HOT-
P2P, 2005, pp. 18 – 27.

[27] K.-T. Chen, P. Huang, and C.-L. Lei, “Game traffic analysis: An
MMORPG perspective,” Computer Networks, vol. 51, no. 3, 2007.

[28] P. Resnick and R. Zeckhauser, “Trust among strangers in internet trans-
actions: Empirical analysis of ebays reputation system,” The Economics
of the Internet and E-Commerce,, vol. 11, pp. 127–157, 2002.


