
380 Int. J. Advanced Media and Communication, Vol. 2, No. 4, 2008

Scalable reputation management with trustworthy

user selection for P2P MMOGs

Guan-Yu Huang, Shun-Yun Hu
∗

and Jehn-Ruey Jiang

Department of Computer Science and Information Engineering,
National Central University,
Taiwan, ROC
E-mail: aby@acnlab.csie.ncu.edu.tw
E-mail: syhu@csie.ncu.edu.tw
E-mail: jrjiang@csie.ncu.edu.tw
∗Corresponding author

Abstract: Recent research on Peer-to-Peer Massively Multiplayer Online
Games (P2P MMOGs) has tried to find more scalable and affordable
solutions to build virtual environments via the resource sharing of clients.
However, P2P approaches face the problem of client misbehaviours where
game rules are not processed properly, undermining a game’s fairness and
normal operations. In this paper, we present REPS, a distributed reputation
management system for P2P MMOGs that allows trustworthy clients be
identified to perform important tasks. REPS first considers the generation,
storage, and query for certain reputation factors that could be the basis to
evaluate user trustworthiness. We then propose Trustworthy user Selection
(TuS) to adjust the weights of each factor to give preference to the more
important ones. Based on the mutual rating among users and reputation
queries, REPS provides a scalable and reliable mechanism to facilitate
decisionmaking, from choosing trustworthy superpeers, to deciding whether
to interact with particular users.

Keywords: P2P; peer-to-peer; virtual environments; trustworthy user
selection; distributed reputation management.

Reference to this paper should be made as follows: Huang, G-Y., Hu, S-Y.
and Jiang, J-R. (2008) ‘Scalable reputation management with trustworthy
user selection for P2P MMOGs’, Int. J. Advanced Media and
Communication, Vol. 2, No. 4, pp.380–401.

Biographical notes:Guan-YuHuang is currently aMaster student atNational
Central University, Taiwan. His current research interest encompasses
distributed systems.

Shun-Yun Hu is currently a PhD student at National Central University,
Taiwan. His main research interests are networked virtual environments
and peer-to-peer systems. He started the SourceForge project VAST
(http://vast.sourceforge.net) in 2005, to provide open source libraries for
creating scalable peer-to-peer-based virtual environments.

Copyright © 2008 Inderscience Enterprises Ltd.



Scalable reputation management with trustworthy user selection 381

Jehn-Ruey Jiang received his PhD Degree in Computer Science in 1995
from National Tsing-Hua University, Taiwan. He is currently with the
Department of Computer Science and Information Engineering, National
Central University. He was a recipient of the Best Paper Award of the
32nd International Conference on Parallel Processing, 2003, and a recipient
of Excellent Paper Award of Mobile Computing 2004. His research interests
include distributed computing, mobile computing, pervasive computing and
peer-to-peer computing.

1 Introduction

Massively Multiplayer Online Games (MMOGs) such as World of Warcraft and
SecondLife, where over hundreds of thousands of players assume virtual identities and
engage in various interactions, have become very popular in recent years. These virtual
worlds are very attractive as they provide immersive 3D environments that people can
constantly explore together. As of 2008, there are more than 12 millions registered
Second Life accounts and over 11 millions paying subscribers in World of Warcraft.
As user population grows, the traditional client-server architecture will suffer from the
server’s limited bandwidth and processing power. To solve this problem, peer-to-peer
networked virtual environments (P2P NVEs, e.g., Knutsson et al., 2004; Bharambe
et al., 2006; Hu et al., 2006) have since been proposed.

In client-server architectures, the server receives and processes all the
user-generated events. This ensures that the actions of every participant aremonitored,
and game rules are executed objectively as the designers have intended. Cheating is
also restricted as all important processing is done by the servers. However, P2P NVEs
do not have such fairness guarantee because most server functions are now assumed
by some clients. A client may modify any information that it possesses and may even
change to a new identity after it has cheated. Although, most players may not go to
great lengths to cheat, as modifying the game code requires certain technical skills.
But even if only a small portion of the users is successful at cheating, gameplay can
still be disrupted seriously.

Fortunately, we observe that the nature of MMOGs is highly socialised, and users
often invest large amounts of time and energy to build their in-game persona to
ensure their status in the virtual world. Users often are also regulated by guilds or
other social organisations, as opinions from other users affect one’s reputation and
social experiences even more than other in-game activities. In other words, there exists
strong social forces in successful MMOGs where active users typically value highly
their status and reputations among peers. Such reputations thus may be exploited
to facilitate certain game operations, such as the selection of trustworthy clients for
important functions (e.g., the group leader or manager for a region). We have seen
similar mechanism in online marketplaces such as eBay or Yahoo Auctions, where
online reputationsbasedonmutual user ratings areused to estimate the trustworthiness
of a user. If such reputation mechanism can be adopted in P2PMMOGs, it might help
users make decisions onwhether to interact with a particular peer, or to select themore
trustworthy clients to hand over responsibilities.



382 G-Y. Huang et al.

One challenge for reputation schemes in a distributed environment is how to deal
with the disruptions from malicious users. The reputation scores given by users might
not be accurate enough to reflect true trustworthiness, because malicious users can
give false reputation ratings. Also, ratings related to specific user behaviours may not
be generalisable to judge the overall trustworthiness of a user. Therefore, considering
more game parameters may help to increase the estimation accuracy and restrain the
interruptions from malicious users. Reputations in a game can be affected by many
factors (i.e., the reputation factors). Besides mutual ratings among peers, accumulated
online time, the number of completed tasks or trades, etc., all can be the basis to judge
trustworthiness. However, the importance of each factor can be different, so we need
to give appropriate weights to each factors. Here we define importance as how well
a given factor can discriminate among users (i.e., the users have a higher degree of
variability in respect to the factor), because with higher discriminability, it indicates
that the factor can better discern the differences among users. How to utilise various
parameters to decide trustworthiness and assign weights for each relevant factors are
thus the main problems for us.

In this paper,weproposeREPS, a reputationmanagement systemforP2PMMOGs
based on peer-rated reputations. Each user has a reputation value based on other
users’ subjective opinions during their interactions. The reputation data is stored
distributively among all users for scalability and security reasons. We also propose
the process of Trustworthy user Selection (TuS) to choose trustworthy users. TuS uses
a statistical regression to combine all potential reputation factors and compute their
importance weights, so that only users matching the strictest reputation criteria are
chosen as trustworthy users.

The rest of this paper is organised as follows. Section 2 provides background on
reputation management and P2P NVEs. Section 3 presents our problem formulation
and challenges in distributed reputationmanagement.We describe the design of REPS
in Section 4 and the design of TuS in Section 5. Evaluations for REPS are performed
in Section 6, while concluding remarks are given in Section 7.

2 Background

2.1 Reputation management

Recently, there have been a number of reputation systems proposed for P2P
applications, often in the context of e-commerce (e.g., Atif, 2002; Dellarocas, 2001;
Aberer and Despotovic, 2001; Xiong and Li, 2004; Ismail and Josang, 2002; Josang
et al., 2007). The goal of these systems is to compute the reliability of a user and
predict future behaviours in respect to a specific metric, and the P2P approach is to
reduce the overhead for servers. Such predications are based on past experiences and
interactions with the user, who is often a buyer or seller in an existing distributed or
semi-distributed e-commerce environment. The reputation value represents a global
view for the user’s behaviour, and can be used as reference towarn of or convince other
users. Users may also quickly identify whether another user in contact is trustworthy,
and could thus avoid interactions with malicious users who cheat for private benefits.
The reputation systems in these P2P applications calculate a peer’s reputation value
by collecting the local evaluations from other users. For example, in Kamvar et al.



Scalable reputation management with trustworthy user selection 383

(2003) and Dellarocas (2001), the sum of a user’s rating from every transaction is used
to compute each user’s personal reputation value. To make reputation values more
globally accessible and reliable PeerTrust (Xiong and Li, 2004) normalises the values
by specific weights based on each user’s global reputation value.

Some recent approaches like Ganeriwal and Srivastava (2004), Mui et al. (2001),
Buchegger andLeBoudec (2004) andZhouandHwang (2007) use theBayesianmethod
that takes a binary input (i.e., positive or negative) to predict the cheating probability
of the next transaction with a user based on past experiences. Zhang and Fang (2007)
provides the QoS experience vectors to perform reputation evaluation on many levels
to determine reputations more precisely.

When querying someone’s reputation in P2P applications, a decentralised method
is often used to aggregate reputation scores from various places to compute a global
reputation value. Users thus not only evaluate each others but also learn of someone’s
reputation value by aggregating the evaluation records. In a client-server architecture,
the server stores all the reputation data, and users just query the server for one’s
reputation. However, in a decentralised environment, often a P2P storage such as
Chord (Stoica et al., 2001), CAN (Ratnasamy et al., 2001) or P-Grid (Aberer, 2001)
is used to distributively store the reputation data on other peers. For example, Zhang
and Fang (2007) uses Chord to find the successors of a user A, where A’s reputation
records (evaluated byother users) are stored on its successors.Whenother users need to
know A’s reputation, they can hash A’s identifier to aggregate the reputation records
from A’s successors. Similarly, EigenTrust (Kamvar et al., 2003) uses the identifier
hash to discover successors to store the reputation values by using CAN (Ratnasamy
et al., 2001) or Chord (Stoica et al., 2001).

There are other issues in P2P reputation management. For example, TrustGuard
(Srivatsa et al., 2005) describes how to distinguish honest persons from dishonest
ones, or to detect the dishonest ones pretending to be honest; how to filter extreme
(i.e., too positive or negative) or fake reputation evaluations to ensure the final
reputation’s correctness; and how to prove that a reputation management is reliable
for a given application? There are many researches that discuss these problems
for P2P and non-P2P applications (e.g., Atif, 2002; Yan et al., 2007; Dellarocas,
2001). We will discuss how REPS deals with these problems in P2P MMOG
scenarios.

2.2 P2P NVEs

In NVEs, every participant has a visibility range called Area of Interest (or AOI,
see Figure 1). The AOI is often circular, and other users within the AOI are called a
user’s AOI neighbours. Users can exchange messages to comprehend the environment
around them, and see the dynamic updates from other AOI neighbours. The key to
scalable P2P-basedNVEs is based on the fact that users have limited views within their
AOI and only need to know information within the AOI. The scalability of the whole
environment thus can be extended if each user only exchanges messages with its AOI
neighbours, without going through the server.

In some approaches (e.g., Knutsson et al., 2004; Yamamoto et al., 2005; Lee and
Sun, 2006; Hu et al., 2008), the whole world is divided into serval disjoint regions
in order to manage information updates effectively. Some participants with better
capacities are chosen as superpeers to relay information (e.g., position updates and



384 G-Y. Huang et al.

event notifications) for other users. Lo et al. (2005) describe superpeers as having a
special role that can provide services to non-superpeers.

Figure 1 Large circle is the AOI of the centre star user (see online version for colours)

For many P2P NVE schemes that adopt superpeers, whether the selected clients are
trustworthy is essential for the system’s proper operations. One of the implications for
our proposed distributed reputation management thus is to provide a reliable method
for selecting trustworthy nodes that may assume important superpeer functions.

3 Problem formulation and challenges

Our goal is to build a scalable reputation management system that supports
P2PMMOGs by developing a distributed method to rate, store, and query reputation
values. Trustworthy users can then be selected based on these reputation evaluations.
The main problem is how to store the reputation scores on reliable peers and query
them effectively. We first make the following assumptions:

• Every user has a fixed AOI radius, where users see each other only when they are
within each other’s AOI. Between two mutually visible users, certain
game-specific interactions can occur (e.g., talking, fighting, trading, etc.).
The users within AOI, or AOI neighbours, change periodically due to users’
positional changes as they move.

• We assume that a P2P NVE overlay exists to provide a list of AOI neighbours
for each user (e.g., Knutsson et al., 2004; Bharambe et al., 2006; Hu et al., 2006).
So any user may connect and exchange messages directly with its AOI
neighbours.

• Two mutually visible users can rate each other multiple times with a score of
positive, neutral, or negative (+1, 0,−1) based on past interactions.
A reputation record follows the form of (rater, rated-user, evaluation), where
rater is the user making the rating, rated-user is the user being evaluated, and
evaluation records the actual rating.

• We assume that the probability for a user to cheat decreases with a person’s
reputation value, especially if the reputation has exceeded certain threshold, as
possibly a lot of effort has been spent to build the reputation (Figure 2).



Scalable reputation management with trustworthy user selection 385

Figure 2 Probability to cheat and reputation value

Based on the above scenario, some challenges for a reputation system in P2PMMOGs
are outlined below:

Reputation evaluation: Building a reputation system requires the experiences and
inputs from users as the basis for reputation values. How to efficiently and precisely
represent user impression about each others thus is the first problem faced by any
reputation schemes. Reputations are meaningless if most values are close to zero due
to the lack of rating. In MMOGs, players often focus more on the game itself than on
miscellaneous activity such as reputation evaluation, mechanisms to encourage user
rating thus is needed. To provide incentives for peer evaluation, the evaluationmethod
needs to be simple and efficient, so that the evaluation can be done conveniently, and
the reputation values can be aggregated quickly.

Storage and query: How to store and query reputations in a fully distributed
environment is the main challenge for a P2P reputation system. To ensure that the
system would scale, we need to store the data distributively while avoiding any server
or client overloads. For the purpose of efficiently querying reputation data, to find the
users that store the reputations and to collect the data with minimal delays are two
main considerations.

Security: Ensuring the reliability and trustworthiness of the information is another
important aspect for a reputation system. In P2P environments, users may modify
the reputation data they keep for private gains. This would disrupt the validity of
the reputation data and possibly cause misunderstandings among users. Therefore, a
system also needs to be able to prevent or recover from possible cheating behaviours.

4 Basic architecture of REPS

We note that there are many game-related indicators, or reputation factors, related to
someone’s reputation in aMMOG. These factors are generated during game play, and
canbe based on certain game statistics (e.g., number of completed tasks or accumulated
online time) or feedbacks fromother users (e.g., reputation ratings). The game statistics
can be collected at the nodes that manage game states (e.g., servers or superpeers),
whereas reputation feedback is obtained from the evaluations of other users. Below
we describe how REPS performs rating, and how the reputation values are stored and
queried.



386 G-Y. Huang et al.

4.1 Localised reputation evaluation

In REPS, users performmutual rating when they are within each others’ AOI, because
interactions can only occur with AOI neighbours. For example, in Figure 3, users C
and F could rate A because they are within A’s AOI. Rating may occur with a
probability related to the intensities of interactions. To ensure that rating would only
occur after user interactions, interactingusers have togenerate a rating rightauthorised
by the rated user to the potential rater, so that the rater can give a rating at some later
time, while preventing users to rate people whom they have never interacted with. The
rating right contains the rated user’s unique identifier and IP address, and is recorded
at the rater so that rating may be performed at a later, more convenient time. Rating
right can be generated via Proxy Signature (Das et al., 2006), which basically provides
amethod to authorise a user to act on behalf of the authoriser to perform certain tasks.
In our case, the rated user authorises the rater to modify his or her reputation value
at another third party node (called reputation manager that will be described later).
However, the details of such authorisation is beyond the scope of this paper.

Figure 3 The rating condition in REPS

As an example, if user C rates userAwith the score of 1, then a rating record of (C,A, 1)
will be stored at A’s reputation manager, which would update A’s reputation based
on A’s existing reputation value.

4.2 Reputation storage and query

Similar to EigenTrust (Kamvar et al., 2003) and Powertrust (Zhou and Hwang, 2007),
inorder to scalably store the reputation records, auser choosesM users as its reputation
managers to store and retrieve reputation data, where M is a system-wide parameter.
The reason for having M reputation managers is to prevent the loss or corruption of
reputation data due to the failure of malicious act of any single reputation manager.
Reputation managers are chosen by hashing unique user identifers using M different
Distributed Hash Table (DHT) functions such as Chord (Stoica et al., 2001) or CAN
(Ratnasamy et al., 2001).DHTprovides anuniquemappingbetween akey (such as user
identifer) and a user node locatedwithin a logical coordinate space, so by usingM hash
functions, M separate nodes can be selected to store the reputation data for any given
user. As the hash functions are well-known and agreed upon in advanced, any other
user can also easily locate the M reputation managers for a given user. Reputation
managers are in charge of saving and computing the reputation score, while making
sure that only users with the proper rating right can modify the respective reputation
score. Potential raters thus send their ratings to a rated user’s reputation managers
by hashing the rated user’s identifer via M different hash functions. Users can also



Scalable reputation management with trustworthy user selection 387

query a given user’s reputation data from the respective reputation managers via the
same way.

5 Trustworthy user Selection (TuS)

Based on the reputation scores collected from reputation managers and possibly some
game statistics from game statemanagers (i.e., the server or some superpeersmanaging
a region), the types of factors that are important and relevant in forming users’
reputations could still differ for variousMMOGs. In order to build a reputation system
that can adapt to different game scenarios, REPS integrates all potential reputation
factors to choose trustworthy users via amechanism called Trustworthy user Selection
(TuS). After collecting the the relevant reputation factors for some users, TuS can
locally determine and adjust the importance of each reputation factors based on user
behaviours, so that the more trustworthy users can be discovered for a given system.

5.1 Scenario description

In a typical scenario, there are r reputation factors that can affect users’ reputation in
the gameworld (e.g., reputation scores, numberof completed tasks, accumulatedonline
time, etc.). Each reputation factor has a weight wi between 0 and ∞ that represents its
importance.TuSalsousesmi to represent the reputation thresholdof the ith reputation
factor. For a user to be considered trustworthy, it must satisfy the thresholds for all
reputation factors, where satisfaction means exceeding the thresholds. So the higher
the value of a reputation factor, the better. If we plot the reputation factors of each user
in consideration on an r-dimensional plane, then the set of points where all reputation
thresholds are satisfied is called a trust region (as shown in Figure 4 for two reputation
factors). Each threshold mi would update with time and environment according to
∆mi, which indicates the magnitude of change for mi. Each ∆mi would change as
appropriate to adjust the size of the trust region according to the relative importance
of each reputation factor.

Figure 4 Trust region in TuS



388 G-Y. Huang et al.

Take two reputation factors for example, we use the most popular reputation factors
total score, S(u), and rating ratio, R(u), to explain how TuS chooses trustworthy
users. Total score is the summation of every score S(i, u) an user u receives from each
rater i, and the rating ratio R(u) indicates the proportion between the total score S(u)
and the total number of ratings T (u) that user u receives. The higher S(u) or R(u),
the more trustworthy user u is

S(u) =
∑

S(i, u) R(u) =
S(u)
T (u)

.

But which reputation factor is more important If user A scores 30 out of 100 ratings,
and user B scores 9 out of 10 ratings. According to S(u) alone, A is more trustworthy
as its total is higher than B’s. But the ratio R(u) of B is higher than A’s, making B
more trustworthy. Yet since 100 people have rated A and only ten persons have rated
B, the A’s rating may be more significant. Some proportionality distortions thus exist
(Table 1).

Table 1 Example of proportionality distortions

User S(u) T (u) R(u)

A 30 100 0.3
B 9 10 0.9

Ideally, wewould like to combine the effects of both the total score and the rating ratio,
as they can both be meaningful. However, we do not know which is more important
as it may differ across regions or MMOGs, where the willingness to rate can vary.
So it is better for TuS to combine S(u) and R(u) in a flexible way.

Figure 4 illustrates the concpet of TuS by a two-factor example, where the x-axis
represents all possible values for the rating ratio and the y-axis represents all possible
values for the total score. A user u can be selected as a trustworthy user if its
reputation point lies within the trust region (satisfying the conditions of R(u) > mR

and S(u) > mS , where mR is between 0 and 1 and mS is between the most negative
rating and the most positive rating). If we want to select N trustworthy users, we can
adjust the thresholdsmR andmS so that there are exactlyN points (i.e., user reputation
values) in the trust region.

To adjust the thresholds of mR or mS , we define the value wS,R as the absolute
value of the regression coefficient (i.e., the slope of the regression line for all points
in the trust region). wS,R can be used as the relative importance weight for reputation
factors from S(u) to R(u). We can also define wR,S , the relative importance weight
fromR(u) to S(u), as the inverse ofwS,R. IfR is the averageR(u) and S is the average
S(u) for all users within the trust region, then:

wR,S =
1

wS,R

wS,R =

∣∣∣∣∣∣
∑

(R(u) − R)(S(u) − S)∑
(R(u) − R)2

∣∣∣∣∣∣ .



Scalable reputation management with trustworthy user selection 389

The regression coefficient shows the distribution for all values, and taking absolute
values means that TuS only cares about the direction of the distribution but not the
shape of the regression line. If wS,R > 1, the trend for points in the trust region is
towards S(u), the importance of S(u) is thus relatively higher than R(u) because the
reputation points are more spread out (i.e., have greater variability) on the dimension
of S(u) than on R(u). The weight of S(u) thus should increase more. If wS,R < 1,
it means that the points are tilting towards R(u) in the trust region, and instead the
weight for R(u) should increase more.

The actual adjustments ∆mR and ∆mS for mR and mS depend on the value
of wS,R, where ∆mS/∆mR = wS,R. TuS increases or decreases ∆mR and ∆mS

simultaneously with the fixed ratio wS,R until the number of the candidate points
matches the number of required users.

Likewise,∆mR and∆mS decreasewith the ratiowS,R when the number of required
trustworthy users is less. When TuS is first initialised, wS,R, mR and mS are set to
1.0, 1.0 and the number of current online users (i.e., the maximum values for each
threshold), which makes the area of the trust region null. We then reduce mR and mS

to extend the trust region with ∆mR/∆mS = 1 to find some initial trustworthy users.

5.2 TuS algorithm process

In order to choose trustworthy users, TuS adjusts the reputation thresholds according
to the weights of each reputation factors. Assuming that a high value indicates
good reputation, TuS adjusts the reputation threshold more for the more important
reputation factors, and less for the less important reputation factors. As such, the
change in the threshold’s magnitude becomes closely related to the weight wi of the
reputation factor i (note that when i = S, wi = wS,R, as used in the last section).

When the desired number of trustworthy users, N , increases, TuS can select more
users by extending the trust region. On the other hand, TuS increases the reputation
threshold to reduce the trust regionwhen the demand for trustworthy users is less. If the
number of currently selected trustworthy users is n, wi is the weight of the reputation
factor i and adjustment fraction ρ is an adjustable system parameter between 0 and 1,
then TuS adjusts threshold mi of i by adding or subtracting a chunk ∆mi, where ∆mi

is defined as follows:

∆mi =




wiρmi if n < N

1
wi

ρmi if n ≥ N
.

Figure 5 shows the process of the TuS algorithm, where each reputation threshold is
set as the highest value initially and the number of trustworthy users is 0. Then, each
reputation threshold is decreased by the same rate∆mi = ρ to extend the trust region,
so that users whose reputation factors higher then all the reputation thresholds can
be selected as the trustworthy users. When there are at least two trustworthy users,
TuS begins to calculate the weightwi bymultivariate analysis and adjust the threshold
mi by the formula above until N trustworthy users are found (the the calculation of
wi will be explained in the next section). At this point, and system goes into a stable
state. When there are dynamic updates to the system (e.g., new AOI neighbours are
encountered) or the number of required trustworthy users N has changed, the system
wouldmodify theweights for reputation factors, and adjust the size for the trust region.



390 G-Y. Huang et al.

Figure 5 Process flow of TuS. n = number of selected trustworthy users; N = number of
required trustworthy users

5.3 Multivariate analysis for weight adjustment

In Multivariate Analysis, (Mardia et al., 1979) describe the statistical principles
of multivariate statistics, which involves observations of more than one statistical
variable. The method is used to perform tradeoff studies across multiple dimensions
while taking into account the effects of all variables of interest. It analyses the
principal components of all input variables to determine the component that is most
discriminating. In mathematical terms, this means finding the distribution direction
that will create the largest variations for weighted averages, and the weights for each
variable guaranteed to generate the largest difference among all variables.

In TuS, we take r different reputation factors as the variables, s total users,
and xi,j as the value for user i’s jth reputation factor. In order to compute the
weight of each reputation factor relative to the first factor, TuS finds each regression
coefficients relative to the first reputation factor according to all current xi,j values
by multivariate analysis. TuS then takes the regression coefficients as the reputation
factor weights relative to the first reputation factor w2,1, w3,1, . . . , wr,1 (for brevity,
we usew2, w3, . . . , wr to represent them). The computations for the weights are shown
as follows:




x1,1
x2,1
· · ·
xs,1


 =




1 x1,2 · · · x1,r

1 x2,2 · · · x2,r

1 · · · · · · · · ·
1 xs,2 · · · xs,r







w1
w2
· · ·
wr


 +




ε1
ε2
· · ·
εr




or equivalently:

X0
(s ∗ 1) =

X
(s ∗ r)

W
(r ∗ 1) +

ε
(s ∗ 1).

We ignore ε during computation because ε = 0 based on the assumption of Mardia
et al. (1979) where the expected error for each reputation factor is minimum.



Scalable reputation management with trustworthy user selection 391

We can now use a matrix transformation to find the solution matrix W as follows:

W = (X ′X)−1X ′X0

where X ′ is the transformation matrix of X . Each wi except w1 in W represents the
adjustment ratio of the trust region where Xi corresponds to X1. Note that w1 is
not the weight of m1 but the intercept of the distribution representing the absolute
location of the distribution. In other words, if ∆mXi

and ∆mX1 are the respective
adjustment ratios of Xi and X1, then wi = ∆mXi

/∆mX1 represents the adjustment
ratio of the reputation factor i to the first reputation factor (i.e., the first reputation
factor).

6 Performance evaluation

In this section, we simulate and compare the operations of TuS with other methods
to select trustworthy neighbours. The main purpose here is to show and compare the
accuracy of TuS under different conditions. We also evaluate the performance when
different reputation factors are considered together. Our simulations are based on
the simulator for VON (Hu et al., 2006), where each node in the system has a fixed
AOI range and can exchange messages with its AOI neighbours. In the simulation,
2000 nodes are placed within a two-dimensional plane 1000- by 1000-unit, and each
AOI radius is set to 100 units. As we are mainly interested in the accuracy of TuS’s
selection, we first assume that the values of various reputation factors are stored and
retrieved from the reputation managers instantly without any delays. Note that on a
real system, as DHT is used for the storage and retrieval of reputation values, to select
N trustworthy users would incur N DHT queries, each with an average latency of
O(n log n) (Stoica et al., 2001), where n is the number of users in the system. As the
DHT queries can be performed concurrently, the overall additional latency is roughly
O(n log n).

At the beginning of the simulation, each node is assigned a random location.
They then move according to a random way-point (Hyytia et al., 2006) model for
1000 simulation time-steps. Each node also has its own misbehaviour probability, the
frequency that misbehaviour occurs (e.g., a misbehaviour probability of 0.3 means
that 30% of the node’s interactions with others is bad and the other 70% is normal).
Each node would rate each other whenever they are within each other’s AOI, at a
probability given by rating frequency (e.g., a 50% rating frequency indicates a node
would on average, rate once for every two neighbour encounters). A score of 1 is given
for encountering normal behaviours and a score of −1 is given for bad behaviours.
We can then collect all the ratings to calculate the total score (i.e., summation of
all ratings) and rating ratio (i.e., ratio of the total score to the number of ratings
given).

Initial reputation thresholds for rating ratio and total score (i.e., mR and mS) are
set to the maximal values (i.e., 1 and 2000, respectively), and the adjustment fraction
ρ is 0.005. When the simulation starts, the trust region first extends according to
the fixed weight wS,R = 1 until the number of selected users exceeds one (because
at least two points are required to calculate the regression line for the trust region).
The area of the trust region would then extend according to how the weight wS,R is
adjusted.



392 G-Y. Huang et al.

To evaluate the accuracy of selections, we require each user to identify a number
of most trustworthy neighbours. The number is chosen to be 20, as this is roughly
25% of the average AOI neighbours in the most crowded scenario. The main accuracy
metric is defined as whether the chosen trustworthy users are indeed the most
trustworthyones, basedon theirmisbehaviour probability (i.e., the number of correctly
identified users with the lowest misbehaviour probabilities). For example, if a method
correctly identifies 9 out of 10 neighbours with the lowest misbehaviour probability,
then the reputation accuracy is 90%. The average reputation accuracy represents
the mean reputation accuracy for all users. Another useful matric is convergence
time, defined as the average time for average reputation accuracy to exceed 95%.
Convergence time shows how fast a given method can select the most trustworthy
users.

6.1 Accuracy analysis

In the first set of simulations, we compare the average reputation accuracy for the
following four methods: TuS, Total score + Rating Ratio (T + R), Total Score only
and Rating Ratio only. T + Rmeans that the reputation thresholds ∆mi are adjusted
using the same initial ratio. Total Score and Rating Ratio choose trustworthy users
simply based on the highest total score or rating ratio, respectively. In other words,
T + R adjusts the trust region without considering the relative importance of a given
metric, while Total Score, and Rating Ratio determines trustworthiness based on only
a single metric.

If we set the rating frequency f = 10% (Figure 6(a)), the average relative weight of
total score to rating ratio wS,R turns out to be 1.72 (i.e., total score is more important
than rating ratio). Therefore, we expect that the average accuracy for the Total Score
method should be higher than that of Rating Ratio, which is indeed the case. Because
the Rating Ratio method considers the factor that may be less relevant for reputation
(i.e., the total number of ratings) in this case, the consideration thus interferes with
the accuracy to choose trustworthy users. By combining total score and rating ratio,
TuS shows a much higher accuracy than other methods, including T + R (29.55%, i.e.,
64.27–34.72%, see Table 2). This is because the relative weight of each metric may shift
during the simulation, so an adaptive weighting scheme such as TuS would perform
better than a non-adaptive scheme such as T + R.

When the rating frequency increases to f = 50%, as shown in Figure 6(b), the
difference between Total Score and Rating Ratio becomes smaller. By combining
considering both total score and rating ratio, TuS and T + R now achieve better
accuracy than the other two naive schemes. The weight wS,R = 1.07 shows that the
difference in accuracy between TuS and T + S gets smaller as their relative importance
becomes more similar.

When f = 90%, all the schemes have enough samples in reputation ratings to
distinguish users’ trustworthiness after 1000 steps, as shown in Figure 6(c). All four
schemes are able to converge to the highest accuracy of 100% as time goes. However,
TuS converges the fastest among the schemes, i.e., convergence time for TuS is only
76.66%of thenext-best scheme,T + R,andonly 62.31%and55.91%of the convergence
time of Total Score and Rating Ratio (see Table 3). These results show that better
selection accuracy can be achievedwith a properly chosen scheme, and that TuS adapts
to different conditions with a generally shorter convergence time.



Scalable reputation management with trustworthy user selection 393

Figure 6 TuS accuracy analysis in different rating frequency: (a) f = 10%; (b) f = 50% and
(c) f = 90% (see online version for colours)



394 G-Y. Huang et al.

Table 2 Average reputation accuracy under different rating frequencies

Scenario Average reputation accuracy (%)

Rating frequency (f) wS,R TuS T + R Total score Rating ratio

10% 1.72 64.27 34.72 42.54 25.27

50% 1.07 71.36 70.9 56.45 48.36

90% 1.13 74.72 67.09 61.18 57.45

Table 3 Convergence time under different rating frequencies

Scenario Convergence time (time-steps)

Rating frequency (f) TuS T + R Total score Rating ratio

10% – – – –

50% 607 635 – –

90% 496 647 796 887

‘−’ indicates when convergence is not achieved within 1000 steps.

6.2 Effect of malicious behaviours

In order to test the robustness of each scheme, we assume that some malicious users
exist and act as follows:

• They give a score of −1 when meeting normal behaviour, and a score of 1 when
seeing bad behaviour.

• Malicious users give a score of 1 to each other regardless of whether the
encounter is normal or bad.

Malicious users are assumed to have the same misbehaviour probability between 0
and 1 as normal users and their activities are not detected (so that malicious acts
can occur continuously to produce inaccurate ratings). In order to determine each
scheme’s robustness in face of malicious behaviours, we use Reputation Aggregation
Error (RAE) to represent the departure of the chosen trustworthy users and the truly
trustworthy ones under the interference from malicious users. RAE is defined as:

RAE =

√√√√√∑s
i=1

(
ri − r̀i

ri

)2

s

where ri is the ranking of the chosen trustworthy user from all AOI neighbours,
r̀i is the true ranking based on misbehaviour probabilities, and s is the number of
selected trustworthy users at the moment. RAE is a relative metric that reflects the
difference between the rankings of all the selected users against the rankings of the
truly trustworthy group of users. The smaller the RAE value, the closer the selected
set is to the actual set of trustworthy users.



Scalable reputation management with trustworthy user selection 395

As the percentage of malicious users increases, Figure 7 shows the variation of
averageRAE from all trustworthy users under each scheme.We can find that although
TuS sometimes provides lower accuracy than T + R (in Figure 6(b)), simulations show
that the ranking of the chosen trustworthy users under TuSmatchesmore closely to the
true ranking. Figure 8 shows the change in average RAE with different total number
of users when the percentage of malicious users is 10%. These simulations show that
besides working under normal situations, TuS also has better performance than other
schemes in face of malicious interference, even under different user sizes.

Figure 7 Effect of malicious users on RAE (see online version for colours)

Figure 8 Effect of user size on RAE (see online version for colours)

6.3 Analysis on selectivity

After evaluating the accuracy and robustness of TuS, another important aspect for a
selection method is its selectivity – the ability of a scheme to discern qualified users



396 G-Y. Huang et al.

froma user pool with ever stricter criteria. For example, if a selectionmethod is capable
to identify only the best 30% in a group, then when the requirement is to identify the
best 10%, the results returned may not be accurate enough for the stricter demand.
We are thus also interested in how selective TuS can identify an ever-smaller group of
trustworthy users. As the average AOI neighbour for 2000 nodes is about 80, we want
to see how good TuS can choose 5, 10, 15, 20, 25, and 30 trustworthy users (i.e., 6.25,
12.5, 18.75, 25, 31.25 and 37.5% of AOI neighbours, respectively) from an average of
80 neighbours.

Figure 9 shows the accuracy of TuS and T + R to choose a specified number of
trustworthy users under different rating frequencies (e.g., f = 10% and f = 50%).
WeuseT + Rfor comparisonas it is the secondbest scheme fromprevious experiments.
In general, we see that better average accuracy is achieved when more trustworthy
users are required, because the penalty for incorrect selection is less (e.g., one missed
selection produces a 20% inaccuracywhen selecting 5 users, but only 3.3% for 30 users).
We can also observe that TuS has better accuracy than T + R regardless of the number
of selected users, especially when the rating frequency is low. That is, even with a small
number of ratings, TuS is still good at identifying the top users.

Figure 9 Effect of different selectivity on TuS accuracy (see online version for colours)

We also see that reputation aggregation error decreases with increasing numbers of
selected users fromFigure 10, as less penalty formissed selection reduces the reputation
aggregation error. Here, TuS also has less errors than T + R, which shows that TuS
selects the real set of trustworthy users better than T + R.

6.4 Accuracy in higher dimensions

In order to see how TuS performs under multiple dimensions (i.e., more than two
reputation factors), besides total score and rating ratio, we consider one more
reputation factor called latest score, L(u), which is defined as follows:

L(u) =
∑

i

LS(i, u)



Scalable reputation management with trustworthy user selection 397

where LS(i, u) represents the last (i.e., most recent) rating user i has given to user u.
Unlike total score, latest score cannot accurately show the historically accumulated
reputation, but it still shows the reputation most relevant to current user behaviour.
Therefore, latest score is also an indicator for a user’s trustworthiness.

Figure 10 Effect of different selectivity on TuS RAE (see online version for colours)

In Figure 11, we compare the accuracy of two dimensional (total score and rating
ratio) and three dimensional (total score, rating ratio and latest score) reputation
factors to choose trustworthy user byTuS. The simulation shows that 3D-TuS has 18%
more average reputation accuracy than 2D-TuS, and also reduces 32% convergence
time (see Table 4). Both accuracy and convergence time improve if we combine more
relevant reputation factors for determining trustworthiness.

Figure 11 2D and 3D TuS accuracy with latest scores (see online version for colours)

Besides combining reputation factors directly related to user behaviour, we also try
to see how factors unrelated to user behaviour would impact the evaluation results.



398 G-Y. Huang et al.

Table 4 Effect of three reputation factors on accuracy and convergence time

Scenario wS,R w(L,Ran),R ARA (%) CT

Reputation factor f (%) 2D 3D 3D 2D 3D 2D 3D

Latest score 50 1.07 1.11 1.24 71.36 81.27 607 413

Random score 50 1.07 0.88 0.14 71.36 65.81 607 679

∗ARA: Average Reputation Accuracy; CT: Convergence Time.

Random score is a randomfixed value between 0 and 1 assigned to each user. Its weight
to other reputation factors is thus relatively lower than the weight of latest score.
In Figure 12, we compare the accuracy of two dimensional and three dimensional
TuS using random score as the third reputation factor. We can see that the effect of
a random factor to both the accuracy and convergence time is low, and the average
difference between 2D TuS and 3D TuS is below 5%, as the weight of the random
factor is low under multivariate analysis. In order to filter less relevant reputation
factors like random score, we can set a threshold ε. If the weight of a reputation factor
less then ε, we can discard this factor to increase the accuracy for the whole system.
Therefore, we can conclude that TuS can filter out less relevant reputation factors by
lowering their weights, and by combing influential reputation factors, overall system
performance would improve.

Figure 12 2D and 3D TuS accuracy with random scores (see online version for colours)

7 Concluding remarks

7.1 Discussions

Reputation evaluation: REPS uses direct rating between users as the main
representation for reputations, where users give a simple score of (−1, 0, 1) to indicate



Scalable reputation management with trustworthy user selection 399

their impressions for each other. It is thus very simple to perform rating and calculate
one’s reputation value. A user’s reputationmanagers update reputation values directly
and individually whenever they get a new reputation record from a rater. The rating
right control allows users to identify which users can rate and ensures that only users
who have interacted can rate each other. REPS thus provides a simple yet effective
method to evaluate and compute reputation values.

Storage and query: Querying for reputation can be done efficiently as a querying user
only needs to hash an user identifier, then it can ask some reputationmanagers directly.
As the number of users increases in a system, the number of query overhead may also
increase for a given user. However, the overhead of each reputation managers can be
reduced by increasing the number of reputation managers M for each user, so that
more reputation managers may share the querying load.

Security: The effect of malicious users on the system is reduced in REPS due to the
mutual monitoring among users. As everyone can rate another user and update their
scores when new situations occur, a cheating user will soon be rated very negatively if
some misbehaviour is discovered. A cheater’s reputation thus can be reduced rapidly
and its privileges or responsibilities could be removed.

As reputation values are stored on multiple reputation managers, improper
modifications by any single reputation manager is masked from the correctly
maintained records in other reputation managers. Reputation manager misbehaviour
thus will impact the system minimally. As reputations are stored and accessed at
reputation managers instead of the rated user, users also cannot manipulate their own
reputation values for unfair benefits.

7.2 Summary

REPS provides reputation management to support P2PMMOGs by allowing users to
rate each other after some interactions, and select trustworthy nodes based on these
ratings. Through the use of reputation managers, reputation records can be stored
and accessed distributively without relying on a centralised server. Reputation values
can thus be used in a scalable way. We also present TuS that chooses the trustworthy
users by combining several reputation factors such as a user’s total score and rating
ratio, and adjusts each factor’s weight to adapt for different scenarios by multivariate
analysis. Dynamic adjustments of the trust region identify the minimum area that
satisfies a given number of required trustworthy users, effectively selecting trustworthy
nodes using the strictest criteria. Additional evaluations also show that TuS
improves its performance if more relevant reputation factors are considered, yet it is
unaffected by irrelevant, undistinguishing factors (e.g., malicious behaviours, random
scores).

There are still some issues we have not yet fully explored in this paper, for example,
the performance for the storage and query of reputation factors under DHT, and the
integration of REPS to existing games or actual P2P MMOGs. Detection of cheating
behaviours by malicious users is another potential issue. These future works would
help to evaluate REPS better in real scenarios and potentially help to address the
security issues hindering the realisation of P2P MMOGs.



400 G-Y. Huang et al.

References

Aberer, K. (2001) ‘P-Grid: a self-organizing access structure for P2P information systems’,
CoopIS 2001, Vol. 2172, June, pp.179–194.

Aberer, K. and Despotovic, Z. (2001) ‘Managing trust in a peer-to-peer information system’,
Proc. ACM CIKM, pp.310–317.

Atif,Y. (2002) ‘Building trust in e-commerce’, IEEE InternetComputing, Vol. 6,No. 1, pp.18–24.

Bharambe, A., Pang, J. and Seshan, S. (2006) ‘AColyseus: a distributed architecture for online
multiplayer games’, Proc. NSDI, pp.155–168.

Buchegger, S. and Le Boudec, J-Y. (2004) ‘A Robust reputation system for P2P and mobile
ad-hoc networks’, Proceedings of SASN ’04, October.

Das, M.L., Saxena, A. and Phatak, D.B. (2006) ‘Algorithms and approaches of proxy signature:
a survey’, International Journal of Network Security.

Dellarocas, C. (2001) ‘Analyzing the economic efficiency of Ebay-like online reputation
reportingmechanisms’,Proceedings of the 3rdACMConference onElectronic Commerce,
pp.171–179.

Ganeriwal, S. and Srivastava, M.B. (2004) ‘Reputation-based framework for high integrity
sensor networks’, Proc. Wksp Economics of P2P Systems, June, pp.66–77.

Hu, S.Y., Chen, J.F. and Chen, T.H. (2006) ‘VON: a scalable peer-to-peer network for virtual
environments’, IEEE Network, Vol. 20, No. 4, pp.22–31.

Hu, S-Y., Chang, S-C. and Jiang, J-R. (2008) ‘Voronoi state management for peer-to-peer
massively multiplayer online games’, Proc. 4th IEEE Intl. Workshop on Networking Issues
in Multimedia Entertainment (NIME), pp.1134–1138.

Hyytia, E., Lassila, P. and Virtamo, J. (2006) ‘A Markovian waypoint mobility model with
application to hotspot modeling’, Proceedings of IEEE ICC 2006, pp.979–986.

Ismail, R. and Josang, A. (2002) ‘The beta reputation system’, Proc. 15th Bled Conf. on
Electronic Commerce, p.41.

Josang, A., Ismail, R. and Boyd, C. (2007) ‘A survey of trust and reputation systems for online
service provision’, Decision Support Systems, Vol. 43, No. 2, June, pp.618–644.

Kamvar, S., Schlosser,M.andGarcia-Molina,H. (2003) ‘The eigentrust algorithmfor reputation
management in P2P networks’, Proc. WWW, May, pp.640–651.

Knutsson, B., Lu, H., Xu, W. and Hopkins, B. (2004) ‘Peer-to-peer support for massively
multiplayer games’, Proc. INFOCOM, pp.96–107.

Lee, H.H. and Sun, C.H. (2006) ‘Load-balancing for peer-to-peer networked virtual
environment’, Proc. NetGames, October, Article No. 4.

Lo, V., Zhou, D., Liu, Y., Dickey, C.G. and Li, J. (2005) ‘Scalable supernode selection in
peer-to-peer overlay networks’, Proc. HOT-P2P, pp.18–27.

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979)Multivariate Analysis, Academic Press.

Mui, L., Mohtashemi, M., Ang, C., Szolovits, P. and Halberstadt, A. (2001) ‘Ratings in
distributed systems: a Bayesian approach’, Proc. Workshop on Information Technologies
and Systems.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S. (2001) ‘Scalable
content-addressable network’, Proc. ACM SIGCOMM, pp.161–172.

Srivatsa, M., Xiong, L. and Liu, L. (2005) ‘Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks’, Proc. WWW, pp.422–431.

Stoica, I., Morris, R., Karger, D., Kaashoek, F. and Balakrishnan, H. (2001) ‘Chord: a scalable
peer-to-peer lookup service for internet application’, Proc. ACM SIGCOMM, pp.149–160.

Xiong, L. and Li, L. (2004) ‘PeerTrust: supporting reputation based trust for peer-to-peer
electronic communities’, IEEE TKDE, Vol. 16, No. 7, pp.843–857.



Scalable reputation management with trustworthy user selection 401

Yamamoto, S.,Murata, Y., Yasumoto, K. and inoru Ito,M. (2005) ‘A distributed event delivery
method with load balancing for MMORPG’, Proc. NetGames, pp.1–8.

Yan, Y., Adel, E-A. and Ehab, A-S. (2007) ‘Ranking-based optimal resource allocation in
peer-to-peer networks’, Proc. INFOCOM, pp.1100–1108.

Zhang, Y. and Fang, Y. (2007) ‘A fine-grained reputation system for reliable service selection
in peer-to-peer networks’, IEEE Transaction on Parallel and Distributed System, Vol. 18,
No. 8, pp.1134–1145.

Zhou, R. and Hwang, K. (2007) ‘Apowertrust: a robust and scalable reputation system for
trusted peer-to-peer computing’, IEEE Transaction on Parallel and Distributed Systems,
Vol. 18, No. 4, pp.460–473.

Websites

Second Life, http://secondlife.com/

World of Warcraft, http://www.worldofwarcraft.com/


